Размер шрифта
Шрифт
Цвета сайта
Изображения
Инт.
Инт.
Информация о жилом, учебном и спортивном комплексах, медцентре, питании и досуге на территории города и Университета Иннополис. Ответы на часто задаваемые вопросы
Информация об образовательной деятельности, приёмной кампании, структуре и органах управления университетом, финансово-хозяйственной деятельности
Специализируется на образовании, исследованиях и разработках в области информационных технологий и робототехники
Образовательные программы для бизнеса по темам ИТ, цифровой трансформации, управления продуктами и инновациями. Ускоренная подготовка ИТ-специалистов
Программы обучения разработаны совместно с мировыми экспертами в сфере информатики, робототехники и программной инженерии с опытом работы в топ-100 вузов мира в партнерстве с компаниями IT‑индустрии
Сведения о научных разработках и инновационных проектах, осуществляемых учеными Университета Иннополис
В Университете Иннополис действуют 17 лабораторий и 9 научных центров, в которых ведется исследовательская работа в области искусственного интеллекта, робототехники, big data, разработки ПО, информационной безопасности
Исследуем и проектируем новые технологические решения совместно с ведущими ИТ-компаниями России, вендорами и 297 ведущих ИТ-компаний в партнерстве.
активно взаимодействует с партнерами по всему миру
In our research, we focus on the task of classification for silent speech recognition with the goal of developing a brain-computer interface (BCI) based on electroencephalographic (EEG)
data, which will be capable of assisting people with mental and physical disabilities and expanding human capabilities in everyday life. Our previous research has shown that silent pronouncing some words results in almost identical distributions of electroencephalographic signal data. Such phenomenon has a suppressive impact on the quality of neural network models behavior. In this paper, we propose a data processing technique which distinguishes between statistically remote and inseparable classes in the dataset. Application of the proposed approach helps us to reachг the goal of maximizing the semantic load of the dictionary used in BCI.
Furthermore, we propose the existence of a statistical predictive criterion for the accuracy of binary classification of the words in a dictionary. The aim of such criterion is to estimate the lower and the upper bounds of classifiers’ behavior only by measuring quantitative statistical properties of the data (in particular, using the Kolmogorov-Smirnov method). We show that higher levels of classification accuracy can be achieved by means of applying the proposed predictive criterion,
making it possible to form an optimized dictionary in terms of semantic load for the EEG-based BCIs. Using such dictionary as a train dataset for classification tasks grants the statistical
remoteness of the classes by taking into account the semantic and phonetic properties of the corresponding words and improves the classification behavior of silent speech recognition models.
Read the article
Authors:
Alexandra Bernadotte (National University of Science and Technology MISIS; Moscow State University; SberDevices, PJSC Sber; bernadotte.alexandra@intsys.msu.ru)
A. D. Mazurin (Moscow State University; SberDevices, PJSC Sber; mazurin1567@gmail.com)
in Proceedings of the Third International Conference Nonlinearity,Information and Robotics 2022, August 24, 2022
Они помогают улучшить работу сайта и сделать его удобнее. Посещая страницы сайта, вы соглашаетесь с условиями использования файлов cookie.