Размер шрифта
Шрифт
Цвета сайта
Изображения
Инт.
Инт.
Информация о жилом, учебном и спортивном комплексах, медцентре, питании и досуге на территории города и Университета Иннополис. Ответы на часто задаваемые вопросы
Информация об образовательной деятельности, приёмной кампании, структуре и органах управления университетом, финансово-хозяйственной деятельности
Специализируется на образовании, исследованиях и разработках в области информационных технологий и робототехники
Образовательные программы для бизнеса по темам ИТ, цифровой трансформации, управления продуктами и инновациями. Ускоренная подготовка ИТ-специалистов
Программы обучения разработаны совместно с мировыми экспертами в сфере информатики, робототехники и программной инженерии с опытом работы в топ-100 вузов мира в партнерстве с компаниями IT‑индустрии
Сведения о научных разработках и инновационных проектах, осуществляемых учеными Университета Иннополис
В Университете Иннополис действуют 17 лабораторий и 9 научных центров, в которых ведется исследовательская работа в области искусственного интеллекта, робототехники, big data, разработки ПО, информационной безопасности
Исследуем и проектируем новые технологические решения совместно с ведущими ИТ-компаниями России, вендорами и 297 ведущих ИТ-компаний в партнерстве.
активно взаимодействует с партнерами по всему миру
Задача машинного обучения: чтобы компьютеры учились на данных из окружающего мира, как это делает человек. За последние годы в этой области произошла революция. Глубокое обучение (один из методов машинного обучения) сыграло решающую роль в создании ряда решений: беспилотных автомобилей, пользовательских интерфейсов с функцией поддержки речи, автоматического анализа медицинских изображений, веб-поисковых систем, рекомендательных систем, кибербезопасности, обнаружения и распознавания объектов и проч.
Хотя уже достигнут значительный прогресс в разработке алгоритмов машинного обучения и лежащей в их основе теории, остается ряд вопросов: как обучить глубоким моделям при отсутствии больших объемов данных? Как создать глубокие модели мобильных устройств с ограниченными ресурсами? Как улучшить обобщающие характеристики глубоких нейронных сетей? Как дать возможность глубоким моделям адаптироваться к неизвестным целевым доменам? Как защитить глубокие модели от враждебных атак?
Исследование лаборатории сосредоточено на поиске ответов на эти и другие вопросы.
Машинное обучение связано с изучением вычислительных методов, позволяющих машинам учиться на данных. Исследования лаборатории в области машинного обучения охватывают:
— Глубокое обучение
— Адаптацию и обобщение домена
— Машинный перевод
— Состязательное обучение
— Иерархическое обучение
— Ресурсоэффективное обучение нейронных сетей
— Обработку текстов на естественных языках (публикация)
— Информационный поиск и индексные структуры (публикация)
— Медицинские изображения и компьютерное зрение (пример)
— Квантовые вычисления и квантовое машинное обучение
01
Решение для анализа компьютерной томографии аорты при планировании операций по шунтированию
Включает комплекс методов и алгоритмов для сегментации, визуализации и автоматического измерения аорты для планирования хирургических операций.
02
Индексирование данных на пользовательских устройствах и в сети
Построение компактного индекса поиска в больших наборах текстов и изображений на пользовательских устройствах. Теоретические исследования в области эффективности распределённых индексов.
03
Анализ текстов на русском, английском и других языках
Решаем задачи построения и визуализации тезауруса, низкоресурсного машинного перевода. Умеем классифицировать научные тексты и устную речь, генерировать аннотации.
Они помогают улучшить работу сайта и сделать его удобнее. Посещая страницы сайта, вы соглашаетесь с условиями использования файлов cookie.