Metropolis-Hastings with Approximate Acceptance Ratio Calculation

Yury Svirschevsky^{1*}, Sergey Samsonov¹

¹HDI Lab, HSE

*vsvirshchevskii@hse.ru

Approximate Metropolis-Hastings

Algorithm 1 Adaptive Approximate Metropolis-Hastings Step

Input: Target density $\pi(x)$, Generative model \mathcal{M}

Output: Samples $Y_{1:n}$ approximating $\pi(x)$, Improved model \mathcal{M}'

 $\hat{p}_{\mathcal{M}} \leftarrow$ Marginal likelihood estimator for \mathcal{M} $X_{1:n} \leftarrow$ Draw n i.i.d. samples from \mathcal{M} $Y_0 \leftarrow X_0$

for i=1 to n do

Compute acceptance probability

$$\alpha(Y_{i-1}, X_i) \leftarrow \frac{\pi(X_i)\hat{p}_{\mathcal{M}}(Y_{i-1})}{\pi(Y_{i-1})\hat{p}_{\mathcal{M}}(X_i)} \wedge 1$$

Get next sample

$$Y_i \leftarrow \begin{cases} X_i & \text{with probability } \alpha(Y_{i-1}, X_i), \\ Y_{i-1} & \text{with probability } 1 - \alpha(Y_{i-1}, X_i) \end{cases}$$

end for

 $\mathcal{M}' \leftarrow \mathsf{Use}\ Y_{1:n}$ to train new model / fine-tune \mathcal{M}

- Generalization of the Metropolis-Hastings Algorithm, a popular MCMC method
- Generative model with intractable marginal likelihood used to model the proposal distribution
- **Estimate** of the model's marginal likelihood used in acceptance probability calculations instead of the exact value

Sample Quality is Improved

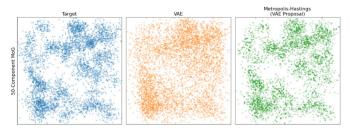


Figure 1: Demonstration on a 2D Mixture-of-Gaussians Target

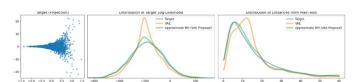


Figure 2: Approximate Metropolis-Hastings Improves Feature Distributions for a 128D Funnel

Marginal Likelihood Estimation

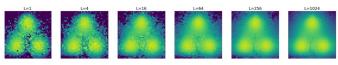


Figure 3: Importance Weighted Likelihood Estimates

The marginal likelihood of a **Variational Autoencoder** is intractable, but can be approximated. Let x and z denote the observed and latent variables respectively, $p_{\theta}(x,z)$ denote the joint distribution, and $q_{\phi}(z|x)$ denote the posterior approximation.

Importance Weighted estimator:

$$\hat{p}^{\text{IW}}(x) = \frac{1}{L} \sum_{i=1}^{L} \frac{p_{\theta}(x, Z^i)}{q_{\phi}(Z^i | x)}, \quad Z^1, \dots, Z^L \stackrel{\text{iid}}{\sim} q_{\phi}(\cdot | x)$$

Sequential Importance Sampling estimator:

$$\begin{split} \hat{p}^{\text{SIS}}(x) &= \frac{1}{L} \sum_{i=1}^{L} \frac{p_{\theta}^{K}(x, Z_{0:K}^{i})}{q_{\phi}^{K}(Z_{0:K}^{i}|x)}, \quad Z^{1}, \dots, Z^{L} \stackrel{\text{iid}}{\sim} q_{\phi}^{K}(\cdot|x) \\ p_{\theta}^{K}(x, Z_{0:K}) &= p_{\theta}(x, Z_{k}) \prod_{k=0}^{K-1} l_{k}(z_{k+1}, z_{k}) \\ q_{\phi}^{K}(Z_{0:K}^{i}|x) &= q_{\phi}(Z_{k}|x) \prod_{k=1}^{K} m_{k}(z_{k-1}, z_{k}) \end{split}$$

where m_k and l_k are densities of forward and reverse Markov kernels. Different choices of kernels lead to different estimators.

Comparison with Classic Metropolis-Hastings

While Normalizing Flows have tractable marginal likelihoods, which allows exact acceptance probability calculation when using them as proposals, they are less flexible than VAEs.

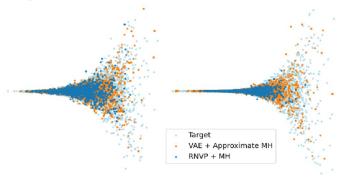


Figure 4: VAE-Proposal Approximate Metropolis-Hastings vs. Flow-Proposal Classic Metropolis-Hastings