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Approximate Metropolis-Hastings

Algorithm 1 Adaptive Approximate Metropolis-Hastings Step
Input: Target density = (z), Generative model M
Output: Samples Y}, approximating =(z), Improved model M’

pm  Marginal likelihood estimator for M
X1, < Draw n i.i.d. samples from M
Yo+ Xo
for i=1to n do

Compute acceptance probability

m(Xi)pm(Yir)
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Get next sample
Y e X;  with probability a(Y;_1, X;),
! Y;_1 with probability 1 — a(Y;_;, X;)

end for
M’ + Use Y}, to train new model / fine-tune M

« Generalization of the Metropolis-Hastings Algorithm, a popular
MCMC method

« Generative model with intractable marginal likelihood used to
model the proposal distribution

« Estimate of the model's marginal likelihood used in acceptance
probability calculations instead of the exact value

Sample Quality is Improved
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Figure 2: Approximate Metropolis-Hastings Improves Feature
Distributions for a 128D Funnel

Marginal Likelihood Estimation

Figure 3: Importance Weighted Likelihood Estimates

The marginal likelihood of a Variational Autoencoder is in-
tractable, but can be approximated. Let = and = denote the ob-
served and latent variables respectively, py(z, z) denote the joint
distribution, and ¢4(z|x) denote the posterior approximation.

Importance Weighted estimator:

Sequential Importance Sampling estimator:
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where m;. and [, are densities of forward and reverse Markov ker-
nels. Different choices of kernels lead to different estimators.

Comparison with Classic Metropolis-Hastings

While Normalizing Flows have tractable marginal likelihoods,
which allows exact acceptance probability calculation when
using them as proposals, they are less flexible than VAEs.
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Figure 4: VAE-Proposal Approximate Metropolis-Hastings vs.
Flow-Proposal Classic Metropolis-Hastings



