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1. Introduction
The current Canonical Polyadic (CP) tensor decomposition optimiza-
tion algorithms face challenges like redundant steps and robustness
issues with linearly dependent matrices, leading to slow progress.CANDECOMP/PARAFAC (CPD)
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◮ Application of Tensors in a raw format may be intractable, as

the required storage memory and a number of operations

grow exponentially with the tensor order.

◮ To tackle this issue, represent higher-order tensors through

multi-way operations over their latent components.

◮ Canonical Polyadic Decomposition (CPD): an extension of

matrix factorization to extract rank-1 tensor patterns from

multiway data.

◮ Computation for large volume and high order tensors, e.g.,

those of order N = 10 or 20

◮ Degeneracy

Figure 1: CPD model.

The ALS is the simplest and widely used algorithm to compute the
CPD, however it suffers from two main drawbacks:

• ALS-type algorithm is high redundancy in computing the update
rules.

• The condition numbers of linear systems in ALS steps are high,
when several factor matrices have collinear loading components.
Then the optimization process becomes inefficient.

2. Contribution
We develop algorithms to address these challenges. In a nutshell we
propose:

• Unfolding of the CP model along two arbitrary modes.

• Updating two factor matrices instead of just one.

• Using property of two mode undolding to derive new update rules
able to jointly update two factor matrices at once.

For example, consider a tensor Y = ⟦A1, A2, A3⟧, it two mode
undolding is Y(1,2) = ⟦B, A3⟧, where B = A2 ⊙ A1. Then A1 and
A2 can be retrieved through the best rank-1 approximation of the
reshaped form of the columns of the matrix B as br = vec(a1raT

2r).
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Figure 2: Scheme for updating factors in ALS and in our
proposed algorithm.

3. Linear Regression with Khatri-Rao structured matrix
The constrained linear regression problem is formulated as follows:

min
X

f(X) = 1
2 ∥Y−Φ XT ∥2

F + µ

2 ∥X∥
2
F , s.t. X = V⊙U, (1)

An indicator function, iD(.) is defined for the set of Khatri-Rao struc-
tured matrices, D = {X|X = U⊙V} to simplify the optimization task.
By introducing an additional variable Z, the problem is formulated as

min f(Z) + iD(X), s.t. X = Z. (2)

We solve the above optimization by Alternating Direction Method of
Multipliers framework. The augmented Lagrangian function associated
with the problem is given as

Lγ(X, Z, T) = f(Z) + iD(X) + 1
2γ

(
∥Z−X−T∥2

F − ∥T∥2
F

)
.

The iterative updates for the primal variables Z and X, and the dual
variable, T, are given by

Z(k+1) = arg min
Z

f(Z) + 1
2γ
∥Z−X(k) −T(k)∥2

F , (3)

X(k+1) = ΠD(Z(k+1) −T(k)), (4)
T(k+1) = T(k) + X(k+1) − Z(k+1). (5)

Update of Z. Solving the optimization problem in (3) amounts to
minimize a quadratic function without constraints, the solution can be
computed in closed-form expression as follows

Z(k+1) = arg min
Z

1
2 ∥Y−ΦZT ∥2

F + µ

2 ∥Z∥
2
F + 1

2γ
∥Z−X(k) −T(k)∥2

F

= (YT Φ + 1
γ

(X(k) + T(k)))(ΦT Φ + (µ + 1
γ

)I)−1.

Algorithm 1 Linear Regression with Khatri-Rao structured Regressor
Input: Data matrix Y: K×(IJ), Φ of size K×R, an initialization for

(X, Z), a maximum number of iterations kmax, and a threshold
ϵ

Output: X is Khatri-Rao product such that it minimizes ∥Y−ΦXT ∥2
F

begin
Initiate T = X = 0
Precompute W = YT Φ, Q = ΦT Φ, Q̃ = (Q + (µ + 1

γ )I)−1

k ← 1
while k ≤ kmax and ∥X−Z∥F

∥Z∥F
> ϵ do

Z← (W + 1
γ (X + T))Q̃ // Update Z

for r = 1, . . . , R do // Update each column of X
Hr ← reshape(zr − tr, [I× J])
Xr ← vec

(
ursrvT

r

)
where [ur, sr, vr] = svds(Hr, 1)

T← T + X− Z // Dual ascent step updates T
k ← k + 1

Update of X. By reshaping the vectors z
(k+1)
r − t

(k)
r to matrices

Hr of size I × J , where r = 1, 2, . . . , R. From (4) and by definition
of the Khatri-Rao product each column of the matrix, X(k+1), corre-
sponds to vectorization of the best rank-1 approximation of the matrices
Hr ≈ urvT

r . This approximation has a unique optimal solution which
can be computed in closed-form by using the truncated SVD.

Theorem 1. For a sufficiently large β = 1/γ, the sequence
(X(k), Z(k), T(k)) generated by Algorithm 1 applied to Problem (2) con-
verges globally, that is regardless of where the initial point is, to the
unique limit point (X(∗), Z(∗), T(∗)), which is a stationary point of the
augmented Lagrangian function, Lγ , and X(∗) is a stationary point of
Problem (2).

4. Proposed algorithm for computing the CPD
The computation of the CPD of a tensor Y of order-N is achieved by
minimizing the Frobenius norm of the error tensor

min
{An}

∥Y− ⟦A1, A2, . . . , AN⟧∥2
F .

Classical algorithms like ALS update each factor sequentially. The ALS
update for each factor involves tensor mode unfolding and optimization

min
An

∥Y(n) −AnΨT
n∥2

F ,

where Ψn = AN ⊙ · · · ⊙An+1⊙An−1⊙ · · · ⊙A1. The ALS update for
An is given by An = Y(n)Ψn (ΨT

n Ψn)−1.
Several key insights can be made:

• High redundancy. The above update is simple, but each up-
date requires to compute the product Y(n)Ψn, which is the most
expensive step in the ALS algorithm.

• Degeneracy and inaccurate update. Since ΨT
n Ψn =

(AT
N AN )⊛ · · ·⊛ (AT

n+1An+1)⊛ (AT
n−1An−1)⊛ · · ·⊛ (AT

1 A1) (⊛
is Hadamart product), when the factor matrices consist of highly
collinear loading components, the correlation matrix ΨT

n Ψn be-
comes poorly conditioned, and the computation of its inverse is
likely to be inaccurate.

Motivated by these observations, we propose a new algorithm to ef-
ficiently tackle redundancy by updating two factor matrices simulta-
neously. By unfolding the tensor along two arbitrary modes n and
m, (n < m), we redefine the optimization problem:

min
Am,An

∥YT
(n,m) −Ψn,m(Am ⊙An)T ∥2

F , (6)

where Ψn,m = AN⊙· · ·⊙Am+1⊙Am−1⊙· · ·⊙An+1⊙An−1⊙· · ·⊙A1
is the Khatri-Rao product of all but two matrices An and Am.
The minimization problem in (6) simplifies into a regression problem
with a Khatri-Rao structured matrix as in (1). Our algorithm updates
two consecutive factor matrices, e.g., A1 and A2 using Algorithm 1,
then continues with pairs like Aj and Aj+1 until all are updated (Al-
gorithm 2). After updating A1 and A2, the algorithm shifts the tensor
dimensions by 2 and updates the next pair. After updating all pairs of
factor matrices, the algorithm randomly permutes the factor matrices.

Algorithm 2 CPD with Two Factors Update
Input: Data tensor Y: (I1 × I2 × · · · × IN ), and rank R

Output: Ŷ = ⟦A1, A2, . . . , AN⟧ such that it minimizes ∥Y− Ŷ∥2
F

begin
Initialize Ŷ

while a stopping criterion is not met do
B ← randompermutation(N)
j ← 1
while j ≤ |B| − 1 do

(n, m)← (B(j),B(j + 1))
Y(n,m) ← (n, m)-unfolding of Y
Ψn,m ← AN ⊙ · · · ⊙Am+1 ⊙Am−1 ⊙ · · · ⊙An+1 ⊙An−1 ⊙
· · · ⊙A1

Solve minX ∥YT
(n,m) − Ψn,mXT ∥ s.t. X = Am ⊙ An using

Algorithm 1
j ← j + 2

Example 1. High collinear factor matrices
We considered order-3 and 4 tensors of size I×· · ·×I with I = {10, 50},
and rank R = {10, 20}, whose all factors An have highly collinear,
97%-99%, loading components.
The proposed algorithm requires less number of update cycles than
ALS, in order to obtain accurate solutions.
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Figure 3: Comparison of relative errors vs number of iterations of algo-
rithms.

Example 2. Ranks exceed dimensions
Third-order random tensors of size 10× 10× 10 and rank R = 25 are
randomly generated. Parameters are initialized by random numbers.
For this scenario, the proposed algorithm attains a (nearly) perfect
success ratio at the relative approximation error of 10−6, while ALS
succeeds in less than 30% of its runs. Both ALS and NLS get stuck in
false local minima with relative errors greater than 10−2.
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Figure 4: The probability distribution of achieving a specific relative error.

Example 3. Multiplication Tensor
We decomposed tensors associated with multiplication of two matrices
of size (2 × 3) × (3 × 2) and (3 × 3) × (3 × 3). The first tensor is of
size 6× 6× 4 and rank-11, and the second tensor of size 9× 9× 9 and
rank-23, both contain only zeros and ones, and obey Finding CPD
of these tensors with minimal rank is related to seeking the fastest
multiplication of two matrices. The proposed algorithm can explain
the tensor with a relative error below 10−6 in around 1000 iterations.
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Figure 5: Convergence of algorithms.

Example 4. Compress Conv layers
The proposed algorithm in most of cases achieves better accuracy com-
pared to the ALS. In addition, the proposed algorithm is more resistant
to perturbations. These extensive simulations convinced us that the
proposed algorithm can be efficiently utilized for compressing convo-
lutional layer of deep neural networks.

Figure 6: Norms of rank-1 tensors in the approx. of the conv layers weights
with ranks 30 and 15.

6. Conclusions
Novel algorithm for CPD updates two factor matrices simultaneously
to address the problem of ALS-type algorithms and instability issues.
The extensive simulation results consistently demonstrated the supe-
riority of our algorithm over both the ALS and NLS algorithms across
various scenarios.
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