Three different views on barrier functions in conic optimization

Roland Hildebrand

Moscow Institute of Physics and Technology Institutskiy per. 9, 141701 Dolgoprudny, Russian Federation Skolkovo Institute of Science and Technology Bol'shoy blvd 30, bldg 1, 121205 Moscow, Russian Federation khildebrand.r@mipt.ru,R.Hildebrand@skoltech.ru

Skolkovo Institute of Science and Technology

Self-concordant barriers studied in conic optimization correspond to objects in other branches of mathematics: centro-affine hypersurface immersions in affine differential geometry and Lagrangian submanifolds in para-Kähler geometry.

1. Conic programs, barriers, interior-point methods

Theorem 3 (Calabi theorem, 1976–1992) Let $K \subset \mathbb{R}^n$ be a regular convex cone. Then there exists a unique complete proper affine sphere with centre at the origin which is asymptotic to the boundary of K.

3. Equivalences barriers — affine differential geometry

In conic optimization problems of the form

INTERNATIONAL CONFERENCE

ON COMPUTATIONAL OPTIMIZATION

$$\min_{x \in K} \langle c, x \rangle : \quad Ax = b \tag{1}$$

are considered, where $K \subset \mathbb{R}^n$ is a regular convex cone. The dual program is of the form

$$\max_{s \in K^*, y} \langle b, y \rangle : \ s + A^T y = c, \tag{2}$$

defined over the dual cone $K^* = \{s \in \mathbb{R}_n | \langle x, s \rangle \ge 0 \quad \forall x \in K\}$. Here $\mathbb{R}_n = (\mathbb{R}^n)^*$. Most conic programs solved in practice are defined over symmetric cones.

Definition 1 A regular convex cone is called symmetric if it is homogeneous and self-dual. Conic programs are solved by interior-point methods, which need a computable selfconcordant barrier for running [1].

Definition 2 (Nesterov, Nemirovski 1994) Let $K \subset \mathbb{R}^n$ be a regular convex cone. A (self-concordant logarithmically homogeneous) barrier on K is a smooth function $F : K^o \to \mathbb{R}$ on the interior of K such that

• $F(\alpha x) = -\nu \log \alpha + F(x)$ (logarithmic homogeneity)

• $F''(x) \succ 0$ (convexity)

• $\lim_{x\to\partial K} F(x) = +\infty$ (boundary behaviour)

• $|F'''(x)[h, h, h]| \le 2(F''(x)[h, h])^{3/2}$ (self-concordance)

for all $\alpha > 0$, $x \in K^o$, and tangent vectors h at x. ν is called the barrier parameter.

Theorem 1 (Nesterov, Nemirovski 1994) Let $K \subset \mathbb{R}^n$ be a regular convex cone and $F : K^o \to \mathbb{R}$ a barrier on K with parameter ν . Then the Legendre transform

$$F_*(s) = \sup_{x \in K} (\langle x, -s \rangle - F(x))$$

is a self-concordant barrier on K^* with parameter ν .

On symmetric cones self-scaled barriers exist which accelerate interior-point methods. The idea of the method consists in approximately solving auxiliary problems of the form Log-homogeneous barriers correspond to centro-affine geometry:

• centro-affine metric on level surfaces $M = \{x \mid F(x) = const\}$ coincides with $\nu^{-1}F''|_M$

• centro-affine cubic form on M coincides with restriction $\nu^{-1}F'''|_M$

• self-concordance means bounded-ness of cubic form measured in the metric

The affine spheres postulated by the Calabi theorem lead to an universal construction of self-concordant barriers on arbitrary cones [3].

Theorem 4 (H. 2014; Fox 2015) Let $K \subset \mathbb{R}^n$ be a regular convex cone, set $\nu = n$. Let $M \subset K^o$ be the proper affine sphere which is asymptotic to ∂K . Then the log-homogeneous function F defined from M as level surface $M = \{x \mid F(x) = 0\}$ is a self-concordant barrier, the canonical barrier.

The self-scaled barriers can also be described in geometric terms [4].

Theorem 5 (H. 2014) Let K be a regular convex cone and F a log-homogeneous barrier on K. Then the following are equivalent:

• K is symmetric and F is self-scaled

the centro-affine cubic form C on the level surface M = {x | F(x) = const} is parallel (has a vanishing covariant derivative) with respect to the centro-affine metric h
 The parallelism condition can be expressed as a PDE:

 $F_{,\alpha\beta\gamma\delta} = \frac{1}{2} \sum_{\rho\sigma} F^{,\rho\sigma} \left(F_{,\alpha\beta\rho} F_{,\gamma\delta\sigma} + F_{,\alpha\gamma\rho} F_{,\beta\delta\sigma} + F_{,\alpha\delta\rho} F_{,\beta\gamma\sigma} \right)$

This yields a local characterization of self-scaledness.

4. Equivalences barriers — Lagrangian submanifolds

On \mathbb{R}^n there does not exist a natural metric. However, the para-Kähler space $P = \mathbb{R}^n \times \mathbb{R}_n$ is equipped with both a pseudo-Riemannian metric g and a symplectic form ω ,

$$\min_{x} \left(\tau \langle c, x \rangle + F(x) \right) : \quad Ax = b; \qquad \max_{s,y} \left(\tau \langle b, y \rangle - F_*(s) \right) : \quad s + A^T y = c.$$

Here $\tau > 0$ is a parameter. The solutions $(x^*(\tau), s^*(\tau), y^*(\tau))$ satisfy the relations

$$Ax^* = b, \quad s^* + A^T y^* = c, \quad s^* = -\tau^{-1} F'(x^*), \quad x^* = -\tau^{-1} F'_*(s^*)$$
(3)

and form the primal-dual central path of the problem. The auxiliary problems are solved by a Newton-like method, where the nonlinear objectives are linearized at a scaling point w satisfying the condition

$$F''(x)w = s.$$

Here x, s is the current iterate of the method.

2. Affine differential geometry

Affine invariants of hypersurfaces $M \subset \mathbb{R}^n$ are studied by affine differential geometry. Let a transversal vector field ξ be defined on M. The acceleration of curves defines a quadratic form h and a cubic form C on M. If the surface is locally strongly convex, h serves as a metric (see Fig. 1).

 $g((u_P, u_D), (v_P, v_D)) := \frac{1}{2} (\langle u_P, v_D \rangle + \langle v_P, u_D \rangle), \ \omega((u_P, u_D), (v_P, v_D)) := \frac{1}{2} (\langle u_P, v_D \rangle - \langle v_P, u_D \rangle).$

Gradient graphs $\Gamma = \{(x, F'(x)) \mid x \in D\}$ of functions $F : \mathbb{R}^n \supset D \to \mathbb{R}$ are then Lagrangian submanifolds of P, i.e., $\omega|_M = 0$. They can also be considered as gradient graphs of the Legendre dual F_* , with the role of the primal and dual factor reversed. Moreover, we have the following result.

Theorem 6 Let $D \subset \mathbb{R}^n$ be a domain, $F : D \to \mathbb{R}$ a C^3 function. Let $\Gamma \subset P$ be the gradient graph of F. Then

- the manifold Γ equipped with the submanifold metric from P is isometric to the domain D equipped with the Hessian metric F''
- the extrinsic curvature (deviation from a geodesic submanifold) of Γ as an embedding into P is proportional to the derivative F'''

Consequently, the self-concordant functions are characterized by a bounded deviation of Γ from a geodesic submanifold.

The linear equality conditions of problems (1),(2) define an *n*-dimensional affine subspace A in the 2n-dimensional product space P. Then the central path defined by (3) is given by the intersection

 $\mathcal{A} \cap (\mathbb{R}_{++} \cdot \Gamma),$

and the scaling point is characterized by the following condition.

Theorem 7 Let x, s be the current iterate. Then the point (w, -F'(w)) on the gradient graph corresponding to the scaling point w is a critical point of the distance function from the pair $(x, s) \in P$ on Γ .

The gradient graph of the canonical barrier also has a geometric characterization.

Theorem 8 Let $K \subset \mathbb{R}^n$ be a regular convex cone and F a barrier on K. Then the following are equivalent:

• F is the canonical barrier, up to an affine scaling

• the gradient graph Γ of F is a minimal surface in P

Figure 1: Left: The acceleration $\ddot{\sigma}$ is decomposed into a tangential part and a part parallel to ξ . The latter is quadratic in the tangent vector $\dot{\sigma}$ and defines a quadratic form h which serves as metric. Right: The difference in acceleration between a metric geodesic and a curve which accelerates always in the direction of ξ defines a cubic form C.

Theorem 2 (Fundamental theorem of affine differential geometry) *If the metric* h *and the cubic form* C *are known on* M*, then the immersion of* M *into* \mathbb{R}^n *can be recovered up to an affine transformation of* \mathbb{R}^n *.*

Several choices of the transversal field ξ are commonly studied [2]:

• $\xi(x) = const$: graph immersions

- $\xi(x) = x$: centro-affine immersions
- ξ is affine normal: Blaschke immersions

The first two are artificial choices, the third uses the structure of the surface itself to define ξ . Objects studied in affine differential geometry:

• improper affine spheres: affine normal is constant

• proper affine spheres: affine normal is centro-affine

A more developed theory exists for 3D cones [5]. For several families of 3D non-symmetric cones the canonical barrier has been computed [6].

References

[1] Y. Nesterov and A. Nemirovski. Interior-Point Polynomial Algorithms in Convex Programming. SIAM, 1994.

[2] K. Nomizu and T. Sasaki. Affine differential geometry. Cambridge Univ. Press, 1994.

- [3] R. Hildebrand. Canonical barriers on convex cones. *Math. Oper. Res.* 39(3):841–850, 2014.
- [4] R. Hildebrand. Hessian Potentials with Parallel Derivatives. *Res. Math.* 65:399–413, 2014.
 [5] J. Dorfmeister, R. Hildebrand and S. Kobayashi. Half-Dimensional Immersions into the Para-Complex Projective Space and Ruh–Vilms Type Theorems. *Res. Math.* 79:245, 2024.
- [6] R. Hildebrand. Analytic formulas for complete hyperbolic affine spheres. *Contrib. Algebra Geom.* 55:497–520, 2014.