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Self-concordant barriers studied in conic optimization correspond to objects in other branches
of mathematics: centro-affine hypersurface immersions in affine differential geometry and La-
grangian submanifolds in para-Kahler geometry.

1. Conic programs, barriers, interior-point methods |

n conic optimization problems of the form

' . Ax=b 1
£I%<C,I> x (1)

are considered, where K C R" is a regular convex cone. The dual program is of the form

max (b,y): s+ Aly=c, (2)
sEK*y

defined over the dual cone K* ={s e R, | (z,s) >0 Ve K}. Here R, = (R™)*.
Most conic programs solved in practice are defined over symmetric cones.

Definition 1 A regular convex cone is called symmetric if it is homogeneous and self-dual.

Conic programs are solved by interior-point methods, which need a computable self-
concordant barrier for running [1].

Definition 2 (Nesterov, Nemirovski 1994) Let K C R" be a regular convex cone. A (self-
concordant logarithmically homogeneous) barrier on K is a smooth function F : K° — R on
the interior of K such that

e Flax) = —vloga + F(x) (logarithmic homogeneity)
« F"'(x) = 0 (convexity)
e lim,_,g5 F(x) = +o0 (boundary behaviour)
o |F"(2)[h, h, h]| < 2(F"(z)[h, h))*/? (self-concordance)
forall o > 0, x € K°, and tangent vectors h at x. v is called the barrier parameter.

Theorem 1 (Nesterov, Nemirovski 1994) Let K C R" be a regular convex cone and F'
K? — R a barrier on K with parameter v. Then the Legendre transform

Fi(s) = :]ngg(({x, —s) — F(z))

Is a self-concordant barrier on K* with parameter v.

On symmetric cones self-scaled barriers exist which accelerate interior-point methods.
The idea of the method consists in approximately solving auxiliary problems of the form

min (7(c,z) + F(x)): Ax = b; max (7(b,y) — Fy(s)): s+ Aly=c.

i S,Y

Here 7 > 0 is a parameter. The solutions (z*(7), s*(7), y™ (7)) satisfy the relations
Az* =b, s*+ Ay =¢, s =—7"1F(z"), 2*=—7"1F/(s% (3)

and form the primal-dual central path of the problem. The auxiliary problems are solved
by a Newton-like method, where the nonlinear objectives are linearized at a scaling point w
satisfying the condition

F'(z)w = s.

Here z, s is the current iterate of the method.

‘ 2. Affine differential geometry |

Affine invariants of hypersurfaces M C R" are studied by affine differential geometry. Let a
transversal vector field ¢ be defined on M. The acceleration of curves defines a quadratic
form h and a cubic form C' on M. If the surface is locally strongly convex, h serves as a metric
(see Fig. 1).
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Figure 1: Left: The acceleration ¢ is decomposed into a tangential part and a part parallel to
¢. The latter is quadratic in the tangent vector ¢ and defines a quadratic form h which serves
as metric. Right: The difference in acceleration between a metric geodesic and a curve which
accelerates always in the direction of ¢ defines a cubic form C.

Theorem 2 (Fundamental theorem of affine differential geometry) /f the metric h and the
cubic form C'" are known on M, then the immersion of M into R" can be recovered up to an
affine transformation of R".

Several choices of the transversal field £ are commonly studied [2]:
*£(x) = const: graph immersions
« {(z) = z: centro-affine immersions
« £ is affine normal: Blaschke immersions

The first two are artificial choices, the third uses the structure of the surface itself to define &.
Objects studied in affine differential geometry:

« Improper affine spheres: affine normal is constant
« proper affine spheres: affine normal is centro-affine
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Theorem 3 (Calabi theorem, 1976—-1992) Let K C R" be a regular convex cone. Then there
exists a unique complete proper affine sphere with centre at the origin which is asymptotic to
the boundary of K.

3. Equivalences barriers — affine differential geometry |

_0og-homogeneous barriers correspond to centro-affine geometry:

- centro-affine metric on level surfaces M = {z | F(z) = const} coincides with v =1 F"|;,
- centro-affine cubic form on M coincides with restriction v =1 F"|,,

» self-concordance means bounded-ness of cubic form measured in the metric

The affine spheres postulated by the Calabi theorem lead to an universal construction of
self-concordant barriers on arbitrary cones [3].

Theorem 4 (H. 2014; Fox 2015) Let K C R'" be a regular convex cone, set v = n. Let
M C K¢ be the proper affine sphere which is asymptotic to 0 K. Then the log-homogeneous
function F' defined from M as level surface M = {x | F(x) = 0} is a self-concordant barrier,
the canonical barrier.

The self-scaled barriers can also be described in geometric terms [4].

Theorem 5 (H. 2014) Let K be a regular convex cone and F' a log-homogeneous barrier on
K. Then the following are equivalent:

« K is symmetric and F' is self-scaled

» the centro-affine cubic form C on the level surface M = {x | F(x) = const} is parallel (has
a vanishing covariant derivative) with respect to the centro-affine metric h

The parallelism condition can be expressed as a PDE:

1
Fapys =5 F"" (FagpFaso + FopF gso + FaspF s10)
po

This yields a local characterization of self-scaledness.

‘ 4. Equivalences barriers — Lagrangian submanifolds |

On R" there does not exist a natural metric. However, the para-Kahler space P = R" x R,, is
equipped with both a pseudo-Riemannian metric ¢ and a symplectic form w,

g((up,up), (vp,vp)) = %(<UPWD>‘|‘<UP>UD>>> w((up,up), (vp,vp)) = %(<UP7UD> —(vp,up)).

Gradient graphs I' = {(z, F'(z)) | z € D} of functions F' : R"” > D — R are then Lagrangian
submanifolds of P, i.e., w|py = 0. They can also be considered as gradient graphs of the
Legendre dual Fi, with the role of the primal and dual factor reversed. Moreover, we have
the following result.

Theorem 6 Let D C R™ be a domain, F : D — R a C° function. LetT C P be the gradient
graph of F'. Then

 the manifold " equipped with the submanifold metric from P is isometric to the domain D
equipped with the Hessian metric F"'

* the extrinsic curvature (deviation from a geodesic submanifold) of I' as an embedding into
P is proportional to the derivative F""

Consequently, the self-concordant functions are characterized by a bounded deviation of I’
from a geodesic submanifold.
The linear equality conditions of problems (1),(2) define an n-dimensional affine subspace A
In the 2n-dimensional product space P. Then the central path defined by (3) is given by the
intersection

AN R4+ - T,

and the scaling point is characterized by the following condition.

Theorem 7 Let z, s be the current iterate. Then the point (w, —F'(w)) on the gradient graph
corresponding to the scaling point w is a critical point of the distance function from the pair
(x,s) € PonT.

The gradient graph of the canonical barrier also has a geometric characterization.

Theorem 8 Let K C R" be a regular convex cone and F' a barrier on K. Then the following
are equivalent:

[ Is the canonical barrier, up to an affine scaling
* the gradient graph I" of F' is a minimal surface in P

A more developed theory exists for 3D cones [5]. For several families of 3D non-symmetric
cones the canonical barrier has been computed [6].
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