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Self-concordant barriers studied in conic optimization correspond to objects in other branches
of mathematics: centro-affine hypersurface immersions in affine differential geometry and La-
grangian submanifolds in para-Kähler geometry.

1. Conic programs, barriers, interior-point methods

In conic optimization problems of the form

min
x∈K

⟨c, x⟩ : Ax = b (1)

are considered, where K ⊂ Rn is a regular convex cone. The dual program is of the form

max
s∈K∗,y

⟨b, y⟩ : s + ATy = c, (2)

defined over the dual cone K∗ = {s ∈ Rn | ⟨x, s⟩ ≥ 0 ∀ x ∈ K}. Here Rn = (Rn)∗.
Most conic programs solved in practice are defined over symmetric cones.
Definition 1 A regular convex cone is called symmetric if it is homogeneous and self-dual.
Conic programs are solved by interior-point methods, which need a computable self-
concordant barrier for running [1].

Definition 2 (Nesterov, Nemirovski 1994) Let K ⊂ Rn be a regular convex cone. A (self-
concordant logarithmically homogeneous) barrier on K is a smooth function F : Ko → R on
the interior of K such that
• F (αx) = −ν logα + F (x) (logarithmic homogeneity)
• F ′′(x) ≻ 0 (convexity)
• limx→∂K F (x) = +∞ (boundary behaviour)

• |F ′′′(x)[h, h, h]| ≤ 2(F ′′(x)[h, h])3/2 (self-concordance)
for all α > 0, x ∈ Ko, and tangent vectors h at x. ν is called the barrier parameter.

Theorem 1 (Nesterov, Nemirovski 1994) Let K ⊂ Rn be a regular convex cone and F :
Ko → R a barrier on K with parameter ν. Then the Legendre transform

F∗(s) = sup
x∈K

(⟨x,−s⟩ − F (x))

is a self-concordant barrier on K∗ with parameter ν.

On symmetric cones self-scaled barriers exist which accelerate interior-point methods.
The idea of the method consists in approximately solving auxiliary problems of the form

min
x

(τ⟨c, x⟩ + F (x)) : Ax = b; max
s,y

(τ⟨b, y⟩ − F∗(s)) : s + ATy = c.

Here τ > 0 is a parameter. The solutions (x∗(τ ), s∗(τ ), y∗(τ )) satisfy the relations

Ax∗ = b, s∗ + ATy∗ = c, s∗ = −τ−1F ′(x∗), x∗ = −τ−1F ′
∗(s

∗) (3)

and form the primal-dual central path of the problem. The auxiliary problems are solved
by a Newton-like method, where the nonlinear objectives are linearized at a scaling point w
satisfying the condition

F ′′(x)w = s.

Here x, s is the current iterate of the method.

2. Affine differential geometry

Affine invariants of hypersurfaces M ⊂ Rn are studied by affine differential geometry. Let a
transversal vector field ξ be defined on M . The acceleration of curves defines a quadratic
form h and a cubic form C on M . If the surface is locally strongly convex, h serves as a metric
(see Fig. 1).

Figure 1: Left: The acceleration σ̈ is decomposed into a tangential part and a part parallel to
ξ. The latter is quadratic in the tangent vector σ̇ and defines a quadratic form h which serves
as metric. Right: The difference in acceleration between a metric geodesic and a curve which
accelerates always in the direction of ξ defines a cubic form C.

Theorem 2 (Fundamental theorem of affine differential geometry) If the metric h and the
cubic form C are known on M , then the immersion of M into Rn can be recovered up to an
affine transformation of Rn.
Several choices of the transversal field ξ are commonly studied [2]:
• ξ(x) = const: graph immersions
• ξ(x) = x: centro-affine immersions
• ξ is affine normal: Blaschke immersions

The first two are artificial choices, the third uses the structure of the surface itself to define ξ.
Objects studied in affine differential geometry:
• improper affine spheres: affine normal is constant
• proper affine spheres: affine normal is centro-affine

Theorem 3 (Calabi theorem, 1976–1992) Let K ⊂ Rn be a regular convex cone. Then there
exists a unique complete proper affine sphere with centre at the origin which is asymptotic to
the boundary of K.

3. Equivalences barriers — affine differential geometry

Log-homogeneous barriers correspond to centro-affine geometry:
• centro-affine metric on level surfaces M = {x | F (x) = const} coincides with ν−1F ′′|M
• centro-affine cubic form on M coincides with restriction ν−1F ′′′|M
• self-concordance means bounded-ness of cubic form measured in the metric

The affine spheres postulated by the Calabi theorem lead to an universal construction of
self-concordant barriers on arbitrary cones [3].
Theorem 4 (H. 2014; Fox 2015) Let K ⊂ Rn be a regular convex cone, set ν = n. Let
M ⊂ Ko be the proper affine sphere which is asymptotic to ∂K. Then the log-homogeneous
function F defined from M as level surface M = {x | F (x) = 0} is a self-concordant barrier,
the canonical barrier.
The self-scaled barriers can also be described in geometric terms [4].
Theorem 5 (H. 2014) Let K be a regular convex cone and F a log-homogeneous barrier on
K. Then the following are equivalent:
• K is symmetric and F is self-scaled
• the centro-affine cubic form C on the level surface M = {x | F (x) = const} is parallel (has
a vanishing covariant derivative) with respect to the centro-affine metric h

The parallelism condition can be expressed as a PDE:

F,αβγδ =
1

2

∑
ρσ

F ,ρσ (F,αβρF,γδσ + F,αγρF,βδσ + F,αδρF,βγσ
)

This yields a local characterization of self-scaledness.

4. Equivalences barriers — Lagrangian submanifolds

On Rn there does not exist a natural metric. However, the para-Kähler space P = Rn×Rn is
equipped with both a pseudo-Riemannian metric g and a symplectic form ω,

g((uP , uD), (vP , vD)) :=
1

2
(⟨uP , vD⟩+⟨vP , uD⟩), ω((uP , uD), (vP , vD)) :=

1

2
(⟨uP , vD⟩−⟨vP , uD⟩).

Gradient graphs Γ = {(x, F ′(x)) | x ∈ D} of functions F : Rn ⊃ D → R are then Lagrangian
submanifolds of P , i.e., ω|M = 0. They can also be considered as gradient graphs of the
Legendre dual F∗, with the role of the primal and dual factor reversed. Moreover, we have
the following result.
Theorem 6 Let D ⊂ Rn be a domain, F : D → R a C3 function. Let Γ ⊂ P be the gradient
graph of F . Then
• the manifold Γ equipped with the submanifold metric from P is isometric to the domain D
equipped with the Hessian metric F ′′

• the extrinsic curvature (deviation from a geodesic submanifold) of Γ as an embedding into
P is proportional to the derivative F ′′′

Consequently, the self-concordant functions are characterized by a bounded deviation of Γ
from a geodesic submanifold.
The linear equality conditions of problems (1),(2) define an n-dimensional affine subspace A
in the 2n-dimensional product space P . Then the central path defined by (3) is given by the
intersection

A ∩ (R++ · Γ),
and the scaling point is characterized by the following condition.
Theorem 7 Let x, s be the current iterate. Then the point (w,−F ′(w)) on the gradient graph
corresponding to the scaling point w is a critical point of the distance function from the pair
(x, s) ∈ P on Γ.
The gradient graph of the canonical barrier also has a geometric characterization.
Theorem 8 Let K ⊂ Rn be a regular convex cone and F a barrier on K. Then the following
are equivalent:
• F is the canonical barrier, up to an affine scaling
• the gradient graph Γ of F is a minimal surface in P

A more developed theory exists for 3D cones [5]. For several families of 3D non-symmetric
cones the canonical barrier has been computed [6].
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