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Epoch Greedy: Selects the optimal arm at Implementations of algorithms are available
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Tensor Elimination: Removing arms based

on whether their reward estimates fall outside a Figure 1:
First row: Five runs were conducted on reward tensors of sizes 10 x 10 x 10 and 5 X 5 X 5 generated from a normal distribution.

Third row 1. Contextual algorithms were run five times on reward tensors of size 5 X 5 x 5, where the first dimension corresponded
to the context.

Third row 2: Contextual algorithms were run five times on the SyntheticBanditDataset simulator (Open Bandit dataset), where
the context dimension was 3 and the number of arms was 5.

specified confidence interval.
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