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Introduction
This paper explores decentralized nonsmooth convex optimization with affine constraints. We extend existing research by incorporating a
nonsmooth stochastic oracle, solved by the well know gradient sliding method. Our result show sliding algorithm achieves sub-optimal solution for
these optimization problems under certain conditions, addressing limitations of prior methods. This work enhances the theoretical understanding
of distributed optimization and offers practical solutions for applications in sensor networks and machine learning.

Porblem Formulation
We consider following optimization problem:

min
x∈X ⊂Rd

1
m

m∑
i=1

fi(x) s.t. Bx = 0. (1)

We assume that

1. fi has a unbiased stochastic subgradient
f

′

i (x, ξ) with bounded variance σ2.

2. fi is convex.

Connected Networks
The graph Laplacian matrix W ∈ Rm×m of
connected networks:

[W ]ij =


−1, if (i, j) ∈ E,

deg(i), if i = j,

0, otherwise.

(2)

where deg(i) is the degree of the i-th node.

Solution to the problem

1. Composite optimization:

min
x∈Q

{ϕ(x) = g(x) + f(x)}, (3)

where f(x) is a nonsmooth convex function and g(x) is a smooth convex function.

2. Convex optimization with two affine constraints:

We introduce a minimization problem with two affine constraints :

min
x∈Q

F(x)s.t. Bx = 0, Cx = 0, (4)

where F (x) = 1
m

∑m
i=1 fi(xi) and x = col(x1, . . . , xm), and also introduce B = B ⊗ Im, C =

C ⊗ Id, B ∈ Rp×d, C ∈ Rm×m. Then we introduce this problem:

F̃(x) = F(x) +
R2

y

ε
∥Ax∥2, (5)

3. Decentralized gradient sliding method

min
x1=···=xm

x1,x2,··· ,xm∈X
f(x) = 1

m

m∑
i=1

fi(xi)s.t. Bx = 0. (6)

Convergence analysis
Gradient sliding algorithm requires

Õ

(
(M2 + σ2)D2

X
ε2

)
calculations of f ′(x, ξ) per node. (7)

and

O

(√
χ2(W )MD2

X
ε2

)
communications, (8)

and

O

(√
χ(B⊤B)MD2

X
ε2

)
multiplications by B⊤B per node. (9)

Conclusions and Future Work
Our approach relies on the gradient sliding al-
gorithm, which requires parameter estimation
before implementation, slightly weakening its
theoretical performance. In our experiments,
we showed that the effect of choice for differ-
ent parameters R and T .
Future work will focus on extending the algo-
rithm to handle biased stochastic oracle and
non-convex objectives, as well as exploring
adaptive strategies to dynamically adjust the
parameters of the algorithm based on the net-
work topology and the structure of the opti-
mization problem.

Experiments
We conducted numerical experiments on the following optimization problem:

min
x

f(x) := 1
n

n∑
i=1

fi(x) subject to Bx = 0, where fi(x) =
√

1
m

∥Cix − di∥2,

with Ci ∈ Rm×d, di ∈ Rm×1, and x ∈ Rd.
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