Parallel Clustering Algorithm for the k-medoids Problem in High-dimensional Space for Large-scale Datasets
Sergey Vandanov?, Aleksandr Plyasunov?, Anton Ushakov?

IDepartment of Physics Novosibirsk State University, Novosibirsk, Russia
2l ab. of Mathematical Models of Decision Making Sobolev Institute of Mathematics of SB RAS, Novosibirsk, Russia
3Matrosov Institute for System Dynamics and Control Theory of SB RAS, Irkutsk, Russia

Problem Statement

Proposed Solution

in machine learning and data mining, but traditional clustering
algorithms, like k-medoids, struggle with scalability when applied to
large datasets. The computation of pairwise distances and the
nearest neighbor search is particularly expensive, making these
algorithms impractical for large-scale and high-dimensional data.

The
can

clustering accuracy,
k-medoids clustering methods.

Clustering in high-dimensional spaces is a fundamental task

goal of this research is to develop a parallelized algorithm that
handle large datasets efficiently, while maintaining high
overcoming the limitations of classical

k-medoids clustering problem in high-dimensional space. Our algorithm
utilizes GPU parallelization to:

We introduce a parallel primal-dual heuristic algorithm for solving the

e Compute the distance matrix and nearest neighbors in a fraction of the
time compared to CPU implementations.

Perform subgradient optimization on the Lagrangian dual function directly
on the GPU, significantly improving computational speed without
compromising solution accuracy.

This parallel approach efficiently addresses challenges associated with
large-scale datasets, offering improvements in both execution time and
solution quality over existing methods like PAM and FasterPAM.

Methodology and Algorithm Overview

Initial Problem Formulation:

d - pairwise distance (weight) matrix
yi=1,

x =1

=L 1 if 1 1s the nearest medoid to point |
k - the number of clusters.

m - the number of points.

A - Lagrange multipliers.

L - Lagrangian dual function (LDF)
p, - reduced cost fory.

In Terms of Integer Linear Programming:

Well Known Approach

Xij <Yi1el,jed (i),
+

min Z d,’jX,'j.
('xy'

Algorithm1 Subgradient algorithm for maximization of the Lagrangian dual function

TE(ig)eEA

Y xj+y=1jel®

i€d™(j)

.....

Sy =k

i€l

Vi, Xii € {0,1},iel, (i,)) € A.

Using Relaxation of the
Constraints (1):

D ()

jel €6~ (7

1f 1 - medoid, 0 otherwise

L()\) = mln{ Z dz'jCL‘z'j — Lij + Yj — 1)}
(z,y) (i.7)eA)

:

> max L(\)

: Initialization: set UB, LB — —oo, Yy, Bmax: 4» S+ 0, and g — 0;

: Compute reduced costs p(4*) and the Lagrangian dual function value £(4°);
. if £(2*) > LB, then LB — £(4°) and B « O;

. if LB/UB > 1 — 107>, then stop;

: Compute y(2°) and subgradient g(4°);

 if ||g(2%)||2 < 107, then stop;

: (Optional.) Compute Z(y(4*)). If UB > Z(y(2’)), then UB «— Z(y(1*)).

: if B > Prax, then y — 52 and g« 0, else g — B+ 1;

. if . < 1072, stop;

7,(1.05-UB—L(}5)).
g

11: Set 25t — 25 + o, g(4%), k — k+ 1 and go to step 2.
12: return found 4, dual bound LB, (optional) upper bound UB.

© 00N UA WN —

10: Compute o «—

.

Proposed Modification

Results

Calculation of reduced costs and Lagrangian dual

function using column generation method

O NN OO WU D W N =

. Initialization: set p(4®) «— —2°, L(4’) «— 0 and j « 1;
. Compute L£(4") «+ L(2°) + 4; and set h « 1;

L dy,)
: Compute p; s (#°) — p; (&) + dy,j)j — 4

: if h < m, then set h — h+ 1 and go to 3;

. if j <m, then setj — j+ 1 and go to 2;

: Find T(4") and compute L(4°) « L(X) + D it Pi(4)-
: return p(2°) and L(4).

= GPU 1024 == CPU 1024 CPU2048 == GPU2048 == CPU 512 GPU 512

B
Ry

10

CUDAC/C++

> /;, then go to 6;

Compute reduced costs with CUDA

Initialize 1D distance matrix d;;.

Initialize nearest-neighbor vector for every column /.
Initialize reduced costs p.

Initialize Lagrange multipliers (\,).

m <—amount of points

block_size <— 256

grid_size <— (m + block_size — 1) /block_size

// Since that moment we run code on the CUDA-kernel
// with block_size and grid_size.

R E

©

0.1

Time (seconds)

2000 4000 6000 8000

Data points

Fig. 2. Distance matrix calculation time depending on the number of points
for the 512, 1024, 2048 embeddings dimension for a Stanford Dogs dataset.
Logarithmic scale on the y-axis.

[a—
@

7 <— blockldx.x x blockDim.x + threadldx.x

: // j - 1s a thread ID in terms of CUDA. Note,
. // that blockldx, blockDim, and threadldx is

: // CUDA-kernel variables.

)
N

[um—
W

clusters on Stanford Dogs dataset

A e 4o Algorithm type | Obj. Val. | Time(sec.) | GAP(%)

16: idz < lp[h x m + j] k-medoids 365593.9 793 0.84%

o dFS e dylide x m)= Ml PLH CPU 362551.3 398 0.01%

19: atomicAdd(piaz, dif f) PLH GPU (Our) | 362551.3 33 0.01%

. PAM 3627542 415 0.06%

22: end if FasterPAM 362754.2 112 0.06%
AN

J L

3aKJsiro4eHue

Tested 12 clustering algorithms for the k-medoids problem. Testing was conducted in two phases: 6 algorithms were excluded in the first

phase for not considering problem-specific features.

In the second phase, evaluated the performance, stability, and scalability of the remaining algorithms on various data volumes. The

most promising algorithm was selected.

Optimized and implemented the PLH algorithm in both parallel and standard versions using C++ with CUDA. The parallel version achieved

a 40x speedup on test datasets without loss of accuracy.

A new data preprocessing method based on vectorization was proposed. The algorithm can handle diverse data types (images, text,

audio) in a unified vector space.

The developed version demonstrated the best performance across different datasets. The integration of the parallel algorithm into the
software is completed, and future directions for optimization have been identified.

