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Part 1
Federated Learning



Jakub Konecny
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Federated Learning
THE UNIVERSITY was developed in 2015/2016 in a
of EDINBURGH collaboration between the University
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Keith Bonawitz et al
Practical Secure Aggregation for Federated Learning on User-Held Data
NIPS Private Multi-Party Machine Learning Workshop, 2016

H. Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, Blaise Aglieray Arcas
Communication-Efficient Learning of Deep Networks from Decentralized Data
20th International Conference on Artificial Intelligence and Statistics (AISTATS), 2017

¢ Google Al Blog

The latest from Google Research

Federated Learning: Collaborative Machine Learning without

Centralized Training Data
Thursday, April 6, 2017

Posted by Brendan McMahan and Daniel Ramage, Research Scientists

Standard machine learning approaches require centralizing the training data on one machine or in a
datacenter. And Google has built one of the most secure and robust cloud infrastructures for
processing this data to make our services better. Now for models trained from user interaction with
mobile devices, we're introducing an additional approach: Federated Learning.

Federated Learning enables mobile phones to ively learn a shared prediction model while
keeping all the training data on device, decoupling the ability to do machine learning from the need to
store the data in the cloud. This goes beyond the use of local models that make predictions on mobile
devices (like the Mobile Vision APl and On-Device Smart Reply) by bringing model training to the
device as well.

It works like this: your device downloads the current model, improves it by learning from data on your
phone, and then summarizes the changes as a small focused update. Only this update to the model is
sent to the cloud, using encrypted ication, where it is i di ged with other user
updates to improve the shared model. All the training data remains on your device, and no individual

updates are stored in the cloud.

Your phone personalizes the model locally, based on your usage (A). Many users' updates are aggregated (8) to form a
consensus change (C) to the shared model, after which the procedure is repeated

=

Federated Learning allows for smarter models, lower latency, and less power consumption, all while
ensuring privacy. And this app! h has another il diate benefit: in addition to providing an update
to the shared model, the improved model on your phone can also be used immediately, powering
experiences personalized by the way you use your phone.

We're currently testing Federated Learning in Gboard on Android, the Google Keyboard. When Gboard
shows a suggested query, your phone locally stores information about the current context and

whether you clicked the st ion. Fe d Learning p that history on-device to suggest
improvements to the next iteration of Gboard's query suggestion model.
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To make Federated Learning possible, = had to overcome many algorithmic and technical
challenges. In a typical machine learning  ‘stem, an optimization algorithm like Stochastic Gradient
Descent (SGD) runs on a large dataset par.  “ned homogeneously across servers in the cloud. Such
highly iterative algorithms require low-latency, ‘ah-throughput connections to the training data. But in
the Federated Learning setting, the data is distri. ‘ed across millions of devices in a highly uneven
fashion. In addition, these devices have significan.. " her-latency, lower-throughput connections
and are only intermittently available for training.

These bandwidth and latency limitations motivate our Federated Averaging algorithm, which can train
deep networks using 10-100x less communication compared to a naively federated version of SGD.
The key idea is to use the powerful processors in modern mobile devices to compute higher quality
updates than simple gradient steps. Since it takes fewer iterations of high-quality updates to produce
a good model, training can use much less communication. As upload speeds are typically much
slower than download speeds, we also developed a novel way to reduce upload communication costs
up to another 100x by compressing updates using random rotations and quantization. While these
approaches are focused an training deep networks, we've also designed algorithms for high-
dimensional sparse x models which excel on problems like click-through-rajgarediction.

Jakub Konecny, H. Brendan McMahan, Felix X. Yu, Peter Richtarik, Ananda Theertha Suresh, Dave Bacon
Federated Learning: Strategies for Improving Communication Efficiency
NIPS Private Multi-Party Machine Learning Workshop, 2016
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Your phone participates in Federated Ld' ing only
when it won't negatively impact youd perience.

The system then needs to communicate and aggregate * - model updates in a secure, efficient,
scalable, and fault-tolerant way. It's only the combinatic  of research with this infrastructure that
makes the benefits of Federated Learning possible

Federated learning works without the need to stor. user data in the cloud, but we're not stopping
there. We've developed a Secure Aggregation protocol that uses cryptographic techniques so a
coordinating server can only decrypt the average update if 100s or 1000s of users have participated
— no individual phone's update can be inspected before averaging. It's the first protocol of its kind
that is practical for deep-network-sized problems and real-world connectivity constraints. We
designed Federated Averaging so the coordinating server only needs the average update, which
allows Secure Aggregation to be used; however the protocol is general and can be applied to other
problems as well. We're working hard on a production implementation of this protocol and expect to
deploy it for Fed d Learning licati in the near future.

Our work has only scratched the surface of what is possible. Federated Learning can't solve all
machine learning problems (for example, learning to recognize different dog breeds by training on
carefully labeled examples), and for many other models the necessary training data is already stored
in the cloud (like training spam filters for Gmail). So Google will continue to advance the state-of-the-
art for cloud-based ML, but we are also committed to ongoing research to expand the range of
problems we can solve with Federated Learning. Beyond Gboard query suggestions, for example, we
hope to improve the language models that power your keyboard based on what you actually type on
your phone (which can have a style all its own) and photo rankings based on what kinds of photos
people look at, share, or delete.

Applying Federated Learning requires machine learning practitioners to adopt new tools and a new
way of thinking: model development, training, and evaluation with no direct access to or labeling of
raw data, with communication cost as a limiting factor. We believe the user benefits of Federated
Learning make tackling the technical challenges worthwhile, and are publishing our work with hopes
of a widespread conversation within the machine learning community.

Jakub Konecny, H. Brendan McMahan, Daniel Ramage, Peter Richtarik

Federated Optimization: Distributed Machine Learning for On-Device Intelligence

arXiv:1610.02527, 2016




The First Federated Learning App:
Next-Word Prediction

Federated Learning is collaborative machine learning
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Federated Learning Issues & Tools

Communication Complexity Data Heterogeneity
local training compression _ . personalization
_ . drift reduction
stochastic approximation ~ Vvariance reduction
variable local training
momentum
Device Heterogeneity Privacy

differential privacy
partial participation
homomorphic encryption

asynchronicity secure multiparty computation
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Optimization Problem

of 1
min f(z) = - > filz)
i—1

# parallel
machines

rcRd

Loss on local data D; stored on machine 2

fi(#) := Eeno, [ fi(2, )]

# model parameters / features

It takes 7; seconds for worker ¢ to compute V f;(x, &), where £ ~ D; 0<m<m< <1y
e It takes 6; seconds for worker i to communicate g € R? to the server

Find a (possibly random) vector & € R* such that E ||V f(2)|*] <&



Parallel Computing Architecture

x gets updated by the server

Server
t X
T
Vfi(z,€) | VI2E) Vialz o)
Worker 1 Worker 2 Worker 3
fi(z) :=E¢up, [f1(2,8)] fa(z) == Eep, [ fo(2,§)] f3(z) == Eenp, [f3(, €)]

V f1(x, &) compute time = 71 secs  V fa(x,£) compute time = 7 secs  V f3(x,£) compute time = 73 secs



Three Types of Heterogeneity

Data data distributions Dq,...,D,, can be different

Compute compute times 74, ..., 7, are nonzero and can be different

Communication communication times 64, ..., 0, are nonzero and can be different




Typical Assumptions

Q fi(x) :

Gradient of local functions is Lipschitz:

IV fi(x) =V fi(y)

max sup | <L
i€{L,ccen} gty |z —yll

0 inf f € R

— 4:€ND7; [fz (xa ‘S)]

Stochastic gradients have bounded variance:

Sup ]ESN”Dq; [vaz(xvg) - ]EéNDi [sz(ib‘,f)] Hﬂ < o



Our Papers on Optimal Parallel SGD

Optimal Time Complexities of
Parallel Stochastic Optimization Methods
Under a Fixed Computation Model
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Rennala SGD
Malenia SGD
Acc. Rennala SGD

Shadowheart SGD

Freya PAGE
Freya SGD

Fragile SGD, Amelie SGD
+ accelerated variants
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Our Papers

Alexander Tyurin and P.R.
Optimal time complexities of parallel stochastic optimization

methods under a fixed computation model
NeurlPS 2023

Alexander Tyurin, Marta Pozzi, Ivan llin and P.R.
Shadowheart SGD: Distributed asynchronous SGD with optimal
time complexity under arbitrary computation and

communication heterogeneity
arXiv:2402.04785, 2024

Alexander Tyurin, Kaja Gruntkowska, and P.R.
Freya PAGE: First optimal time complexity for large-scale
nonconvex finite-sum optimization with heterogeneous

asynchronous computations
arXiv:2405.1554, 2024

Alexander Tyurin and P.R.
On the optimal time complexities in decentralized stochastic

asynchronous optimization
arXiv:2405.16218, 2024

First optimal
parallel SGD under...

... computation
(and/or data) heterogeneity

... communication
(and computation) heterogeneity

[Rennala SGD as a special case]

... computation heterogeneity for
finite-sum problems

in the large-scale regime: m > n?

... computation and
communication heterogeneity in
the decentralized setup



Peter, What About the Weird Algorithm Names?

FIDEN RING

Rennala

Rennala, Queen of the Full
Moon is a Legend Boss in Elden
Ring. Though not a demigod,
Rennala is one of the
shardbearers who resides in the
Academy of Raya Lucaria.
Rennala is a powerful sorceress,
head of the Carian Royal family,
and erstwhile leader of the

Academy.



Optimal Parallel Stochastic Gradient Methods

Rennala SGD
Tyurin & R (NeurlPS ‘23)

Data
Heterogeneity
(D; different)

Compute
Heterogeneity
(1; different)

Communication

Heterogeneity
(0; different)

Smooth
Nonconvex

Infinite / Finite

Supports
Decentralized
Setup?

Optimal
Time
Complexity?

Malenia SGD
Tyurin & R (NeurlPS ‘23)

Accelerated Rennala SGD
Tyurin & R (NeurlPS ‘23)

Shadowheart SGD
Tyurin, Pozzi, llin & R ‘24

Freya PAGE
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Freya SGD
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Fragile SGD
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Part 3
Previous Approaches
to Parallelizing SGD



Hero SGD

Algorithmic idea: The fastest worker does it all!

The hero!
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(Fair) Minibatch SGD

Algorithmic idea: Each worker does one job only!

i
[




Asynchronous SGD

Algorithmic idea: All workers are slaves and useful




HOGWILD!: A Lock-Free Approach to Parallelizing
Stochastic Gradient Descent

Feng Niu
leonn@cs.wisc.edu

Benjamin Recht
brecht@cs.wisc.edu

Christopher Ré

chrisref@cs.wisc.edu

Stephen J. Wright
swright@cs.wisc.edu
Computer Sciences Department
University of Wisconsin-Madison
Madison, WI 53706

Abstract

Stochastic Gradient Descent (SGD) is a popular algorithm that can achieve state-
of-the-art performance on a variety of machine learning tasks. Several researchers
have recently proposed schemes to parallelize SGD, but all require performance-
destroying memory locking and synchronization. This work aims to show using
novel theoretical analysis, algorithms, and implementation that SGD can be im-
plemented without any locking. We present an update scheme called HOGWILD!
which allows processors access to shared memory with the possibility of overwrit-
ing each other’s work. We show that when the associated optimization problem
is sparse, meaning most gradient updates only modify small parts of the deci-

published in NIPS 2011

NeurlPS

Stephen Wright

Department of Computer Sciences and Wisconsin Institute for Discovery, University.

& rouomne

sion variable, then HOGWILD! achieves a nearly optimal rate of convergence. We
demonstrate experimentally that HOGWILD! outperforms alternative schemes that
use locking by an order of magnitude.

1 Introduction

‘With its small memory footprint, robustness against noise, and rapid learning rates, Stochastic Gra-
dient Descent (SGD) has proved to be well suited to data-intensive machine learning tasks [3, 5,24].
However, SGD’s scalability is limited by its inherently sequential nature; it is difficult to paral-
lelize. Nevertheless, the recent emergence of inexpensive multicore processors and mammoth,
web-scale data sets has motivated researchers to develop several clever parallelization schemes for
SGD [4,10,12,16,27). As many large data sets are currently pre-processed in a MapReduce-like
parallel-processing framework, much of the recent work on parallel SGD has focused naturally on
MapReduce implementations. MapReduce is a powerful tool developed at Google for extracting
information from huge logs (e.g., “find all the urls from a 100TB of Web data™) that was designed
to ensure fault tolerance and to simplify the maintenance and programming of large clusters of ma-
chines [9]. But MapReduce is not ideally suited for online, numerically intensive data analysis.
Iterative computation is difficult to express in MapReduce, and the overhead to ensure fault toler-
ance can result in dismal throughput. Indeed, even Google researchers themselves suggest that other
systems, for example Dremel, are more appropriate than MapReduce for data analysis tasks [20].

For some data sets, the sheer size of the data dictates that one use a cluster of machines. However,
there are a host of problems in which, after appropriate preprocessing, the data necessary for statisti-
cal analysis may consist of a few terabytes or less. For such problems, one can use a single inexpen-
sive work station as opposed to a hundred thousand dollar cluster. Multicore systems have significant
performance advantages, including (1) low latency and high throughput shared main memory (a pro-
cessor in such a system can write and read the shared physical memory at over 12GB/s with latency
in the tens of nanoseconds); and (2) high bandwidth off multiple disks (a thousand-dollar RAID
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ur Inspiration: Two Beautiful Papers

Asynchronous SGD Beats Minibatch SGD
Under Arbitrary Delays

Konstantin Mishchenko Francis Bach Mathieu Even Blake Woodworth

DI ENS, Ecole normale supérieure,
Université PSL, CNRS, INRIA
75005 Paris, France

Abstract

The existing analysis of asynchronous stochastic gradient descent (SGD) degrades
dramatically when any delay is large, giving the impression that performance
depends primarily on the delay. On lhe contrary, we prove much better guarantees
for the same h SGD dless of the delays in the gradients,
depending instead just on the number of parallel devices used to implement the
algorithm. Our guaramccs are strictly better than thc exlstmg analyses and we
also argue that asy SGD SGD in the
settings we consider. For our analysis, we introduce a novel recursion based on
“virtual iterates” and delay-adaptive stepsizes, which allow us to derive state-of-the-
art guarantees for both convex and non-convex objectives.

1 Introduction

We consider solving stochastic optimization problems of the form

minyege {F(x) = Eennf(x:6)} (O}
which includes machine learning (ML) training objectives, where f (x E) represents the loss of a
model parameterized by x on the datum £. D ding on the D could rep a

finite dataset of size n or a population distribution. In recent years, such stochastic optimization
problems have continued to grow rapidly in size, both in terms of the dimension d of the optimization
variable—i.e., the number of model parameters in ML—and in terms of the quantity of data—i.e., the
number of samples &, . .., &, ~ D being used. With d and n regularly reaching the tens or hundreds
of billions, it is increasingly necessary to use parallel optimization algorithms to handle the large
scale and to benefit from data stored on different machines.

There are many ways of employing parallelism to solve (1), but the most popular approaches in
practice are first-order methods based on stochastic gradient descent (SGD). At each iteration, SGD
employs stochastic estimates of VF to update the parameters as X;. = X1 — YV f(Xk_1:€k—1)
for an i.i.d. sample £ ~ D. Given M machines capable of computing these stochastic gradienl
estimates V f(x; £) in parallel, one approach to parallehzmg SGD is what we call “Minibatch SGD.”

This refers to a synchronous, parallel algorithm that d the current p Xk-1 to
each of the M machines, waits while they compute and communicate back their gradnent estimates
gL _1»--- &M |, and then takes a minibatch SGD step X = Xx_; — _L o ,- This is a

natural idea with long history [16, 18, 55] and it is a commonly used in pracuce [e g 22] However,
since Minibatch SGD waits for all M of the machines to finish computing their gradient estimates
before updating, it proceeds only at the speed of the slowest machine.

There are several possible sources of delays: nodes may have heterogeneous hardware with different
computational throughputs [23, 25], network latency can slow the communication of gradients, and

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

Sharper Convergence Guarantees for Asynchronous
SGD for Distributed and Federated Learning

Anastasia K ian U. Stich Martin Jaggi
EPFL CISPA* EPFL
anastasia.koloskova@epfl.ch stich@cispa.de martin. jaggiQepfl.ch

Abstract

‘We study the asynchronous stochastic gradlcnl descent algorithm for distributed
training over n workers which have varying computation and commumcauon
frequency over time. In this i workers p in
parallel at their own pace and return those to the server without any synchronization.
Existing convergence rates for this algorithm for non-convex smooth objectives
dcpcnd on the maxlmum gradient delay 7,,,,x and show that an 5-slauonary point
is reached after O(0%c™% | Typaxc ™) iterations, where o denotes the variance of
stochastic gradients.

In this work we obtain (i) a tighter convergence rate of
O(0%e™2 + \/TmaxTavge ") without any change in the algorithm, where 7oy, is
the average delay, which can be significantly smaller than 7p,... We also provide
(ii) a simple delay-adaptive learning rate scheme, under which asynchronous SGD
achieves a convergence rate of O (022 + TavgE 1), and does not require any

extra tuning nor extra Our result allows to show
for the first time that asynchronous SGD is always faster lhan mini-| balch SGD.
In addition, (iii) we consider the case of h d by
federated learning applications and improve the convergence rate by proving a
weaker dep on the i delay pared to prior works. In particular,
we show that the geneity term in g rate is only affected by the

average delay within each worker.

1 Introduction

The stochastic gradient descent (SGD) algorithm [43, 13] and its variants (momentum SGD, Adam,
etc.) form the foundation of modern machine learning and frequently achieve state of the art results.
With recent growth in the size of models and available training data, parallel and distributed versions
of SGD are becoming increasingly important [57, 17, 16]. Without those, modern state-of-the art
language models [44], generative models [40, 41], and many others [S0] would not be possible. In
the distributed setting, also known as data-parallel training, optimization is distributed over many
compute devices working in parallel (e.g. cores, or GPUs on a cluster) in order to speed up training.
Every worker computes gradients on a subset of the training data, and the resulting gradients are
aggregated (averaged) on a server.

The same type of SGD variants also form the core algorithms for federated learning applications [34,
24] where the training process is naturally distributed over many user devices, or clients, that keep
their local data private, and only transfer (e.g. encrypted or differentially private) gradients to the
server.

A rich i exists on the g theory of above mentioned parallel SGD methods, see
e.g. [17. 13] and references therein. Plain parallel SGD still faces many challenges in practice, motivat-

“CISPA Helmholtz Center for Information Security

36th C on Neural i ing Systems (NeurIPS 2022).
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Optimal Time Complexities of
Parallel Stochastic Optimization Method
Under a Fixed Computation Model

Alexander Tyurin Peter Richtérik
KAUST AUST
Sandi Arsbia i Arabia
aloxandertiuringgrail.con richtarikograil.com

Abstract

Paraliclization is  popular strategy for improving the performance
algorithms. Optimization methods are no exception: design of cfficient parallel
optimization methods and tight analysis of their theorctical properties are important
rescarch endeavors. While the minimax complexities are well known for sequential

thods, the theory of is less explored.
In this paper, we propose 3 new protocol that generalizes the classical oracle frame-
work approach. Using this protocol, we establish minimar complesites for parallel
optimization methods that have access to an unbiased stochastic gradient oracle.
with bounded variance. We consider a fixed computation model characterized
h worker requiring a fixed but worker-dependent time to calculate stochas-
gradient. We prove lower bounds and develop optimal algorithms that attain
them. Our results have surprising consequences for the literature of asynchronous
optimization methods.

1 Introduction

‘We consider the nonconvex optimization problen

where f © R and € s & random variable with some distribution D o
machine learnin

ould be the space of all possible data, D is the distribution of the
datase,and £(-,€) is the loss of a data sample . I this paper we address the fllows
@) workers are 3

X R,QCRY,
" d ainin
el
(i) the  worker requires 7, seconds' to calculate a stochastic gradient of .
The function / is L-smooth and lower-bounded (see Assumptioas 7.1-7.2), and stochastic gradicats
are unbiased and o -vasiance-bounded (see Assumption 7

lable to work in

L1 Classical theory

In the nonconvex sefting. gradient descent (GD) is an optimal method with respect 10 the umber of
gradient (V f) calls (Lan, 2020; Nesterov, 2018; Carmon et a., 2020) for inding an approximately
Stationary point of . Obviously, a key issue with equires access (0 the exact gradieats

'O smy other usit of time.

Alexander Tyurin and P.R.

Optimal time complexities of parallel stochastic optimization
methods under a fixed computation model

NeurlPS 2023



Setup

Optimal Parallel Stochastic Gradient Methods

Supports Optimal
Decentralized Time
Setup? Complexity?

Data Compute Communication Smooth Smooth Infinite / Finite
Heterogeneity | Heterogeneity Heterogeneity Nonconvex Convex Sum?
(D; different) (7; different) (6; different)

Rennala SGD
Tyurin & R (NeurlPS ‘23)

Malenia SGD
Tyurin & R (NeurlPS 23)

Accelerated Rennala SGD
Tyurin & R (NeurlPS ‘23)

Shadowheart SGD
Tyurin, Pozzi, Ilin & R ‘24

Freya PAGE
Tyurin, Gruntkowska & R ‘24

Freya SGD
Tyurin, Gruntkowska & R 24

Fragile SGD
Tyurin & R 24

Amelie SGD
Tyurin & R 24




Rennala SGD

Algorithmic idea: Minibatch SGD with asynchronous minibatch collection
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Upper Bound

] Gradient of f is L-Lipschitz
Theorem (informal)

Assume data homogeneity and zero communication times.
Then Rennala SGD solves the problem in

Number of parallel machines 1
m
, 1 1 LA LAg?
96 X  min — E — - —
meq{l,...n} \ T “ . Ti g E°m
1=
seconds.

Compute times
O<n </ <.--- <71,

sup Eevp [V (2,€) ~ Vf(@)|?] < o?

Algorithm outputs & such that E [|Vf(2)?] <e R



Matching Lower Bound

Upper Bound

Theorem (informal) Gradient of f is L-Lipschitz

Rennala SGD solves the problem in

Theorem (informal) (Z)<——) ssssssss

Algorithm outputs & such that E [|V/@)|?] <¢ | Sup Eewn (IVf(@,&) - VI@)IP] < o*

It is not possible to design a method that will find a solution faster than in

—1

1 1 LA LAg?
() ‘ — — |
mE?ll,l.n..,n} m Z T ( € £2m )

seconds.

Rennala SGD = first optimal parallel SGD




Classical Oracle: Keeps Track of # Iterations

Distribution

Function class governing noise Algorithm class

Oracle clg

Protocol 1 Classical Ora. le Protocol
1: Imput: function f € F oracle ag

:T:kZAkfﬂl.... - > 2% = A% fork = 0.

gk+1 _ Vf(:l:k, §k:+1)

Iteration com} easure):

p sup inf{keN|E[|Vf(")]?] <e}

Moracle (Aa
A fEF (0,D)€O(F)

[Nemirovsky and Yudin, 1983] [Nesterov, 2018]
[Carmon et al, 2020] [Arjevani et al, 2022]



New Oracle: Keeps Track of Time

Protocol 2 Time Oracle Protocol

1: Input: functions f € F, oracle and distribution (O, D)
- s9=0

cA

2

3: fork=0,...,oodo
4 (1" k) = AR, ..
5 (Sk—l—l k—l—l) O([AJH
6: end for

> {/k‘--l—'l 2 {1[

Iteration complg

Moracie (A ke N|E[|VFh)?] < e}

. . Sp:={k e NU{0} | t* <t}
Time complexit Ity measure):

ime ’ = f f > f 2 <
e (A.F) L Sp s i {t_o| ngstuw( M_s}



Data Homogeneous Regime

Method Time Complexity
Minibatch SGD m (L2 + o LP)

Asynchronous SGD

(Cohen et al., 2021) 1 i 1 —1 (ﬂ n G2LA)
(Koloskova et al., 2022) n 4t~ T; £ ne?
(Mishchenko et al., 2022)

Rennala SGD
(Theorem 7.5)

Lower Bound
(Theorem 6.4)




Experimental Results (Sample)
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Figure 3: # of workers n = 10000.
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Optimal Tlme Complexmes of
Parallel Stoch O Method:
Under a Fixed Computation Model

Alexander Tyurin Peter Richtérik
Soud Arsbia Saudi Arabia
aloxandertiurintgrail.con richtarikdgmail.con
Abstract

Paraliclization is  popular strategy for improving the performan rative
algorithms. Optimization methods are no exception: design of cfficient parallel
opmizaion methods ud Ught snelyits o thelrdeursicalpropertic e porant
rescarch endeavors. While the minimax complexities are well known for sequential

thods, the theory of s less explored
12 s papa, o puopove b mew protecol het prmeralioo tho el ceacl frme
work approach. Using this protocol, we establish minimar complesites for parallel
optimization methods that have access to an unbiased stochastic gradient oracle.
with bounded variance. We consider a fixed computation model characterized
by each wokstrquiring e but worke-dependen time o calult sochas-
tic gradient. We prove lower bounds and develop optimal algorithns that sttain
hcon, Ourresily have swpeti comsequences o ¢ Ekcraue of amcromons
optimization methods.

1 Introduction
Weconsidrthe mncomve opimization probler
where VR, Q € R, i  rdoms vl with some ibotion D

machi ng ould be the space of all possible data, D is the distribution of the tr
atanct, 20, )i 15 Jossof a e sple €. b hi paper w st thefolomiog naurs et

(i) workers are available to work in paalle],
(i) the  worker requires 7, seconds' to calculate a stochastic gradient of .
The function / is L-smooth and lower-bounded (see Assun 2), and stochastic gradients
are unbiased and o”-vasiance-bounded (see Assumption 7.3).
L1 Classical theory
Jnthe ik shla. e it (OD) bt el st i it 0 W o of
ey

o /(8] } 0]

Soaay pot o 1, O quires access (0 the exact gradieats

'O smy other usit of time.
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Two Extensions

Alexander Tyurin and P.R.

Optimal time complexities of parallel stochastic optimization
methods under a fixed computation model
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Extension 1
Handling Data Heterogeneity
(Malenia SGD)



Malenia SGD: Setup 0= 350

fi(@) == Eeup, [fi(@, )]

Optimal Parallel Stochastic Gradient Methods

Supports Optimal
Decentralized Time
Setup? Complexity?

Infinite / Finite
Sum?

Data Compute Communication Smooth Smooth

Heterogeneity | Heterogeneity Heterogeneity Nonconvex Convex
(D; different) (7; different) (6; different)

Rennala SGD
Tyurin & R (NeurlPS ‘23) x O

Malenia SGD , 0
Tyurin & R (NeurlPS 23)

Accelerated Rennala SGD
Tyurin & R (NeurlPS ‘23)

Shadowheart SGD
Tyurin, Pozzi, Ilin & R ‘24

Freya PAGE
Tyurin, Gruntkowska & R ‘24

Finite

Freya SGD
Tyurin, Gruntkowska & R 24

Finite

_ nearly

The distributions Dy, ..., D,, are allowed to be different

Fragile SGD

Tyurin & R 24

Amelie SGD
Tyurin & R 24

XX XXX




Malenia SGD

Minibatch size

Method 6 Malenia SGD

2
o

1: Input: starting point z°, stepsize , parameter S S = max { [——‘ an}

2: Run|Method 7}in all workers .

3: fork=0,1,...,K—1do

4: Initg¥* = 0and B; =0

—1

5: While[(% Sy B%) < %]do

6: Wait for the next worker

7 Receive gradient, iteration index, worker’s index (g, k', 7)

8: if £/ = k then

O: gF=gF+g Method 7 Worker’s Infinite Loop
10: B@; = Bi+1 1: Init g = 0, k¥’ = —1, and worker’s index %
11: end if 2: while True do
12: Send (z*, k) to the worker 3:  Send (g,k,1) to the server
13:  end while 4:  Receive (z*, k) from the server
14: E_ 15 1 2k 5 K=k

g o nLim1 5.9 6 g=Vfi(ahe), £~D

150 =z = —79 7: end while
16: end for




(Nonconvex) Data Heterogeneous Regime

Method Time Complexity
Minibatch SGD m (LA 4+ <L)
ne

Malenia SGD
(Theorem A.4)

Lower Bound
(Theorem A.2)




Extension 2
Handling the Convex Regime
(Accelerated Rennala SGD)



Accelerated Rennala SGD: Setup

Optimal Parallel Stochastic Gradient Methods

Data

Heterogeneity
(D; different)

Rennala SGD
Tyurin & R (NeurlPS ‘23)

Compute
Heterogeneity
(74 different)

Communication
Heterogeneity
(; different)

Smooth
Nonconvex

Smooth
Convex

Infinite / Finite
Sum?

Optimal
Time
Complexity?

Supports
Decentralized
Setup?

Malenia SGD
Tyurin & R (NeurlPS 23)

Accelerated Rennala SGD
Tyurin & R (NeurlPS ‘23)

Shadowheart SGD
Tyurin, Pozzi, Ilin & R ‘24

Freya PAGE
Tyurin, Gruntkowska & R ‘24

4
Y 4

big data regime

Freya SGD
Tyurin, Gruntkowska & R 24

Fragile SGD
Tyurin & R 24

Amelie SGD
Tyurin & R 24




Convex (Data Homogeneous) Regime

Method Time Complexity
.. : 2 52 o2 B2
Minibatch SGD m (min { 2R, MEEE L 4 "R
Asynchronous SGD (L n 1) ! (LR2 n o2 R2 )
(Mishchenko et al., 2022) n £<i=1 7; € ne?

(Accelerated) Rennala SGD
(Theorems B.9 and B.11)

Lower Bound (Theorem B.4)

Lower Bound (Section M) . [ VER MZ2R2 } ( 1 —n 1\ 1! ,2R2
(Woodworth et al., 2018) 71 min { NG T\n )

V f is L-Lipschitz, f is M-Lipschitz, and ||z° — 2*|| < R
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Shadowheart SGD

Optimal Parallel SGD
under Compute Heterogeneity

Alexander Tyurin, Marta Pozzi, Ivan llin and P.R.
Shadowheart SGD: Distributed asynchronous SGD with optimal time complexity under

arbitrary computation and communication heterogeneity
arXiv:2402.04785, 2024



Shadowheart SGD: Setup
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Shadowheart SGD

Optimization Problem
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Shadowheart SGD

Table 1: Time Complexities of Centralized Distributed Algorithms. Assume that it takes at most h; seconds to worker
1 to calculate a stochastic gradient and 7; seconds to send one coordinate/float to server. Abbreviations: L = smoothness
constant, ¢ = error tolerance, A = f(z") — f*, n = # of workers, d = dimension of the problem. We take the Rand K
compressor with K = 1 (Def. C.1) (as an example) in QSGD and Shadowheart SGD. Due to Property 5.2, the choice K = 1
is optimal for Shadowheart SGD up to a constant factor.

Method Time Complexity . Time Complexities in Some Regimes
max{h,, Tn} — oo, he = Bt = Vi ical C ()
max{hi, 1} < 0oVi < n e ;l‘ri E T Vi € [n] Nurnerlcal2 omparison
(the last worker is slow) (equal performance) o7fe =
1 103 10°
. 2 2
. . . 2 o0 h.d+ dTo ho LA 3
Minibatch SGD 3 hi,dt; (Q == LA) ma'x{ ’ * "me Y ne € x 10
(see (3)) :Iel?r}f] max{ Tk (S (non-robust) (worse, e.g., when 7, d or n large)
QSGD (see (7)) dhe? LA
(Alistarh et al., 2017) max max{hi, 7:} (£ +1) L& + 42242 ol 2 ST x 102
(Khaled & Richtérik, 2020) i€[n] ne (non-robust) (worse, e.g., when & small)
Rennala SGD ‘ 1 ) R
(Tyurin & Richtarik, 2023c), . , 2 (., LA ® < o0 > max { h. d+ hL} LA
> min max { hxz.,d7z., °— - =2 = » 8T The e
Asynchronous SGD = jen) J J El hag (robust) (worse, e.g., when 7, d or n large)
(e.g., (Mishchenko et al., 2022))
Shadowheart SGD < 00 . 2 2
(see (9) and Alg. 1) t*(d — 1,%/e, [hq, 75]7) LA© (cobust) max {h, 7, 4% 4/ dthe= hnLE} La
(Corollary 4.4)

The time complexity of Shadowheart SGD is not worse than the time complexity of the competing centralized methods (see Sec. 6), and is strictly better in many regimes.
We show that (12) is the optimal time complexity in the family of centralized methods with compression (see Sec. 7).

@ Upper bound time complexities are not derived for Rennala SGD and Asynchronous SGD. However, we can derive the lower bound using Theorem N.5 with w = 0. One should take d; instead of 7; when apply
Theorem N.5 because these methods send d coordinates. 7 is a permutation that sorts max{h;, d7; } : max{hz,,d7z, } < --- < max{hz,,d7z }

®) we numerically compute time complexities for d = 10, n = 10%, hy ~ U(0.1,1), 7; ~ U(0.1,1) (uniform i.i.d.), and three noise regimes Uz/s € {1, 10%, 106}. We report the factors by which the time
complexities of the competing methods are worse compared to the time complexity of our method Shadowheart SGD. So, for example, Minibatch SGD, QSGD and Asynchronous SGD can be worse by the factors x 10%,
% 10*, and x 102, respectively.

The mapping ¢ is defined in Def. 4.2.
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Shadowheart SGD: Adding More Workers...

=%¥— Asynchronous SGD

10—3 i
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Freya PAGE: Setup {0 2

fi(@) == Eeup, [fi(@, )]

Optimal Parallel Stochastic Gradient Methods

R . . Supports Optimal
Data Compute Communication Smooth Smooth Infinite / Finite PP . p.
. . . Decentralized Time
Heterogeneity | Heterogeneity Heterogeneity Nonconvex Convex Sum? .
. . . Setup? Complexity?
(D; different) (7; different) (6; different)
Rennala SGD
Tyurin & R (NeurlPS ‘23) X 0 Inf X
Malenia SGD
Tyurin & R (NeurlPs '23) 0 Inf
Accelerated Rennala SGD
Tyurin & R (NeurlPS ‘23) X 0 Inf X
Shadowheart SGD
Freya PAGE ..
Tyurin, Gruntkowska & R ‘24 x 0 Flnlte x big data regime
Freya SGD . e
Tyurin, Gruntkowska & R 24 x 0 Flnlte | x x
Fragile SGD J
Tyurin & R 24 X Inf nearly
Amelie SGD
Tyurin & R ‘24 Inf

Dy=---=DD, D; = uniform distribution over m outcomes



PAGE: Optimal Serial SGD

for Finite-Sum Nonconvex Optimization

PAGE: A Simple and Optimal Probabilistic Gradient Estimator for
Nonconvex Optimization

Zhize Li' Hongyan Bao' Xiangliang Zhang' Peter Richtdrik

Abstract

In this paper, we propose a novel stochastic gradi-
ent estimator—ProbAbilistic Gradient Estimator
(PAGE)—for nonconvex optimization. PAGE is
easy to implement as it is designed via a small ad-
justment to vanilla SGD: in each iteration, PAGE
uses the vanilla minibatch SGD update with prob-
ability p, or reuses the previous gradient witl
small adjustment, at a much lower computational
cost, with probability 1 — p,. We give a simple
formula for the optimal choice of p,. Moreover,
we prove the first tight lower bound Q(n + ¥3')
for nonconvex finite-sum problems, which also
leads to a tight lower bound (b + %) for non-
convex online problems, where b := min{ %, n}.
Then, we show that PAGE obtains the optimal
convergence results O(n + ¥3') (finite-sum) and

O(b + ¥¥) (online) matching our lower bounds
for both nonconvex finite-sum and online prob-
lems. Besides, we also show that for nonconvex
functions satisfying the Polyak-Lojasiewicz (PL)
condition, PAGE can automatically switch to a
faster linear convergence rate O(-log ). Finally,
we conduct several deep learning experiments
(e.g. LeNet, VGG, ResNet) on real datasets in
PyTorch showing that PAGE not only converges
much faster than SGD in training but also achieves
the higher test accuracy, validating the optimal
theoretical results and confirming the practical
superiority of PAGE.

1. Introduction

Nonconvex optimization is ubiquitous across many domains
of machine leaming, including robust regression, low rank
matrix recovery, sparse recovery and supervised leaning

King Abdullsh University of Seience and Technology, Thuwal,

Kingdom of Saudi Arabia. Correspondence to: Zhize Li
<zhize li@kaust.edu_sa>.

Proceedings of the 38" International Conference on Machine
Learning, PMLR 139, 2021, Copyright 2021 by the author(s).

(Jain & Kar, 2017). Driven by the applied success of decp
neural networks (LeCun et al., 2015), and the critical place
nonconvex optimization plays in training them, research
in nonconvex optimization has been undergoing a renais-
sance (Ghadimi & Lan, 2013; Ghadimi et al., 2016; Zhou
etal., 2018; Fang et al., 2018; Li, 2019 Li & Richtdrik,
2020).

1.1 The problem

Motivated by this development, we consider the general
optimization problem

min f(z), m

where f : R? — Ris a differentiable and possibly non-
convex function. We are interested in functions having the
finite-sum form

@) =13 1), )
&

where the functions f; are also differentiable and possi-
bly nonconvex. Form (2) captures the standard empirical
risk minimization problems in machine learning (Shalev-
Shwartz & Ben-David, 2014). Morcover, if the number of
data samples n is very large or even infinite, e.g., in the
online/streaming case, then f (x) usually is modeled via the
online form

f(=)

which we also consider in this work. For notational con-
venience, we adopt the notation of the finite-sum form (2)
in the descriptions and algorithms in the rest of this paper.
However, our results apply to the online form (3) as well
by letting fi(x) := F(z,;) and weating n as a very large
value or even infinite.

E¢oplF(z.¢)), [©)

12. Gradient complexity

To measure the efficiency of algorithms for solving the
nonconvex optimization problem ( standard to bound
the number of stochastic gradient computations needed to
find a solution of suitable characteristics. In this paper we

min a;:lzn:fzx

rERA n 4
1=1

i() = Eeup, [ filz, €

D, =---=D,

min

Zhize Li, Hongyan Bao, Xiangliang Zhang, and P.R. rERd
PAGE: A simple and optimal probabilistic

gradient estimator for nonconvex optimization
ICML 2021

D; = uniform distribution over m outcomes

m

Zfiﬂf

1=1

after butchering/redefining notation)



Table 1: Comparison of the worst-case time complexity guarantees of methods that work with asynchronous
computations in the setup from Section 1 (up to smoothness constants). We assume that 7; € [0, oo] is the bound
on the times required to calculate one stochastic gradient V f; by worker i, 1 < ... < 7, and m > nlogn.
Abbr: 6° := f(2°) — f*, m = # of data samples, n = # of workers, € = error tolerance.

Method Worst-Case Time Complexity Comment
. 0 0 .
Hero GD (Soviet GD) rim n 2 5?) Suboptimal
Hero PAGE (Soviet PAGE) 50 50 vm .
[Li et al., 2021] Tim 4+ 711 /M (T T 4 T & VT Suboptimal
Limitations:

SYNTHESIS
[Liu et al., 2022]

bounded gradient assumption,
calculates the full gradients(a),
suboptimal.(b)

Asynchronous SGD
[Koloskova et al., 2022]
[Mishchenko et al., 2022]

Limitations:
o2 _bounded variance assumption,
suboptimal when € is small.

Rennala SGD
[Tyurin and Richtarik, 2023]

Limitations:
o2 _bounded variance assumption,
suboptimal when € is small.

Freya PAGE
(Theorems 7 and 8)

. -1
min 3 1 2
je[”]((zgl Ti) (5 ﬂ))
. s
e ((24) o)
0 J -1
Comin ((£ L) (vm+4))©
€ J€[n] =1 Ti

Optimal in the large-scale regime,
i.e., v/m > n (see Section 5)

Lower bound
(Theorem 10)

)
(£2) mes)

Freya PAGE has universally better guarantees than all previous methods: the dependence on € is © (1/¢) (unlike Rennala SGD and Asynchronous SGD),
the dependence on {7; } is harmonic-like and robust to slow workers (robust to 7, — o©) (unlike Soviet PAGE and SYNTHESIS),

the assumptions are weak, and the time complexity of Freya PAGE is optimal when v/m > n.

@ In Line 3 of their Algorithm 3, they calculate the full gradient, assuming that it can be done for free and not explaining how.

®) Their convergence rates in Theorems 1 and 3 depend on a bound on the delays A, which in turn depends on the performance of the
slowest worker. Our method does not depend on the slowest worker if it is too slow (see Section 4.3), which is required for optimality.
(©) We prove better time complexity in Theorem 6, but this result requires the knowledge of {7;} in advance, unlike Theorems 7 and 8.



Algorithm 1 Freya PAGE

1: Parameters: starting point z° € R?, learning rate v > 0, minibatch size S € N, probability

p € (0, 1], initialization g° = V f(z") using ComputeGradient(z”)  (Alg. 2)

2: fork=0,1,..., K —1do
3: ghtl =gk — 4k
4:  Sample c* ~ Bernoulli(p)
5: if ¢ = 1 then (with probability p)
6: V f(z*+1) = ComputeGradient(z**1) (Alg. 2)
7: ghtl = Vf(zFt1)
8: else (with probability 1 — p)
9: = > (Vfi(z*t) — Vfi(z*)) = ComputeBatchDifference(S, 211, z¥) (Alg. 3)
€Sk
10: gt =gF+ 5 X (VSfi(a*th) — VSi(a))
i€Sk
11: end if
12: end for

(note): S* is a set of i.i.d. indices that are sampled from [m)|, uniformly with replacement,

Sk =5




Algorithm 2 ComputeGradient(x) Algorithm 3 ComputeBatchDifference(.S, x, v)

P N

[y

13:

SYXRIaN

Input: point z € R¢ 1: Input: batch size S € N, points z,y € R?
Initg =0 € R%, set M = () 2: Initg =0 € R4
Broadcast x to all workers 3: Broadcast x, y to all workers
For each worker ¢ € [n], sample j from [m| 4: For each worker, sample j from [m| uniformly
uniformly and ask it to calculate V f;(x) and ask it to calculate V f;(z) — V f;(y)
while M # [m] do 5: fori=1,2,...,5do
Wait for V f,,(z) from a worker 6: Wait for V f,,(x) — V f,(y) from a worker
if p € [m]\M then 7. g+ g+ 5(Vip(z) = Vi(y))
g g+ %Vf () 8: Sample j from |[m] uniformly and ask
Update M <~ M U {p} this worker to calculate V f;(z) — V f;(y)
end if 9: end for
Sample j from m|\M uniformly and ask 10: Return g

this worker to calculate V £, (z)

. Notes: i) the workers can aggregate V f,, locally, and the algorithm can
end while ) ggreg fp y g

) m call AllReduce once to collect all calculated gradients. i1) By splitting
Return 9= Z Vf { (il',' ) [m] into blocks, instead of one V f,, we can ask the workers to calculate
=1

the sum of one block in Alg. 2 (and use a similar idea in Alg. 3).




Freya PAGE: Experiment 1

=¥= Asynchronous SGD: Step size: 3.0517578125e-05 —_— =¥=— Asynchronous SGD: Step size: 3.0517578125e-05
—f— Asynchronous SGD: Step size: 6.103515625e-05 —d— Asynchronous SGD: Step size: 1.52587890625e-05
=<4 Soviet PAGE: Step size: 1.0 —— -4~ Soviet PAGE: Step size: 1.0 ——
=p— Soviet PAGE: Step size: 0.5 =p— Soviet PAGE: Step size: 0.5
{0~ Rennala SGD: BS: 120 Step size: 0.0078125 ——— = Rennala SGD: BS: 80 Step size: 0.0078125 ———
@~ Rennala SGD: BS: 120 Step size: 0.015625 @~ Rennala SGD: BS: 120 Step size: 0.015625
=gp— Freya PAGE: Step size: 1.0 — == Freya PAGE: Step size: 0.5
== Freya PAGE: Step size: 0.5 —de= Freya PAGE: Step size: 0.25
0 100000 200000 300000 400000 500000 0 100000 200000 300000 400000 500000
times (seconds) times (seconds)

(a) n = 1000 (b) n = 10000

Figure 1: Experiments with nonconvex quadratic optimization tasks. We plot function suboptimality
against elapsed time.



Freya PAGE: Experiment 2

3107 —¥— Asynch SGD: Step size: 0.00390625 3x107* T~
A:;:zh:g:zzz SGDj Stzg 2:22 0'001953125 =¥~ Asynchronous SGD: Step size: 0.00048828125
¢ Soviet PAGE: Step s;ize' 0.5 e =~ Asynchronous SGD: Step size: 0.000244140625
—p— Soviet PAGE: Step size: 0.25 =4 Soiet PAGEf Step P 03
2.8x 1071 - Rennala SGD: BS: 120 Step size: 0.5 —P— SQVISLPAGE: Step size: 0:23
) . € Rennala SGDj BS: 120 St ze: 0'25 28x1071 O~ Rennala SGD: BS: 120 Step size: 0.5
b oter s 10 ©- Rennala SGD: BS: 120 Step size: 0.25
| : Freya oACE: Step size: o —4— Freya PAGE: Step size: 2.0
we= Freya P otep size: O, —i— Freya PAGE: Step size: 1.0
—
* _1 —_—
< 2.6x10 * 26x10"1
S ><
= =
| |
_—
¥ 2.4x107! 24x107t
22x1071 22x1071
0.0 0.2 0.4 0.6 0.8 0 100000 200000 300000 400000 500000 600000

1.0
times (seconds) leb times (seconds)

(a) n = 100 (b) n = 10000

Figure 2: Experiments with the logistic regression problem on the MNIST dataset.



Freya PAGE: Experiment 2

Table 2: Mean and variance of algorithm accuracies on the MNIST test set during the final 100K
seconds of the experiments from Figure 2b.

Method Accuracy Variance of Accuracy

Asynchronous SGD
[Koloskova et al., 2022] 92.60 5.85e-07
[Mishchenko et al., 2022]

Soviet PAGE
[Li et al., 2021]

Rennala SGD
[Tyurin and Richtérik, 2023]

Freya PAGE 92.66 1.01e-07

92.31 1.62e-07

92.37 3.12e-06




Amelie SGD

-

~~ Amelie

|

Optimal SGD
under Computation & Communication Heterogeneity

Alexander Tyurin and P.R.
On the optimal time complexities in decentralized stochastic asynchronous optimization
arXiv:2405.16218, 2024



Decentralized Setup: Amelie SGD

Method The Worst-Case Time Complexity Guarantees Comment
Minibatch SGD % max { (1 =+ —) max{ max_ T;—;, max h; }} suboptimal if 02/5 is large
i,j€[n] i€[n]
RelaySGD, Gradient Tracking max L;A ) requires local L ;-smooth. of f;,
(Vogels et al., 2021) > €0 0% max by suboptimal if o2/« is large
(Liu et al., 2024) t€ln] (even if max;¢[,] Li = L)
Asynchronous SGD requires similarity of the functions { f; },
(Even et al., 2024) o requires local L ;-smooth. of f;

Amelie SGD and Lower Bound LA o2 (1 = 1 .
(Thm. 7 and Cor. 2) = max {J;lél{); | Ti—js {g?éc] hi, 2 ( = 7;21 hz) } Optimal up to a constant factor




The End
(for real)
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