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Abstract
We continue to develop the concept of studying

the ε-optimal policy for Average Reward Markov De-
cision Processes (AMDP) by reducing it to Discounted
Markov Decision Processes (DMDP). Existing research
often stipulates that the discount factor must not fall be-
low a certain threshold. Typically, this threshold is close
to one, and as is well-known, iterative methods used to
find the optimal policy for DMDP become less effective
as the discount factor approaches this value.

Our work distinguishes itself from existing studies
by allowing for inaccuracies in solving the empirical
Bellman equation. Despite this, we have managed to
maintain the sample complexity that aligns with the lat-
est results. We have succeeded in separating the contri-
butions from the inaccuracy of approximating the tran-
sition matrix and the residuals in solving the Bellman
equation in the upper estimate so that our findings en-
able us to determine the total complexity of the epsilon-
optimal policy analysis for DMDP across any method
with a theoretical foundation in iterative complexity.
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(

|S||A|
(1−γ)3ϵ2

)
✓

[2] Õ
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Table 1: Comparison of algorithms based on sample com-
plexity.

S – set of possible states, A – set of possible ac-
tions, H – the span of the bias function of the opti-
mal policy, tminorize – minorization time for MDP.

Environment

Suppose we have a square grid where we can move in 4 direc-
tions: On square grid we have the following reward function:

r(s, a) =


1, if s = (20, 19) and a =→;

1, if s = (19, 20) and a =↓;
0, otherwise.

Figure 1: The grid environment used for testing.

Main Result

Algorithm 1 Perturbed Model-Based Planning
Input: Parameter η ∈ (0, 1), sample size per state-action

pair n ≥ 500H
(1−γ)2ε2η4

β, target error ε ∈

(
0, 1−η

1
5+(2−η)

√
|S|

500H

]
,

discount factor γ.
1: for each state-action pair (s, a) ∈ S × A do
2: Collect n samples ss,a1 , . . . , ss,an from P (·|s, a).
3: Form the empirical transition kernel P̂ (s′|s, a) =

1
n

∑n
i=1 1{s

s,a
i = s′}, for all s′ ∈ S.

4: end for
5: Set perturbation level ξ = (1−γ)εη

4 .

6: Form perturbed reward r̃ = r + Z where Z(s, a)
i.i.d.∼

Unif(0, ξ).
7: Compute a greedy policy πT .
8: return πT .

Theorem: The policy obtained by the algorithm is ε-optimal:

∥V ∗ − V πt∥∞ ≤ ε +
1

(1− γ)η
∥V̂ ∗

p − Vt∥∞,

where the number of samples n satisfies:

n ≥ 500H

(1− γ)2ε2η4
β.

V πt – value function for MDP determined by policy πt. V ∗

– optimal value function for such MDP. V̂ ∗
p – optimal value

function for perturbed empirical MDP. Vt – current value

function estimate, β = 2 log

(
2|S||A| log( e

1−γ)
δ

)
, δ ∈ (0, 1) –

mismatch probability in estimates.

Experiment

We conducted tests in a grid world with stochastic actions.
The results show convergence to near-optimal policies as the
number of samples increases. For high discount factors, the
required sample size grows, but the method remains efficient.
Value function solvers used: VI – value iteration, AVI – Nes-
terov accelerated value iteration, SAVI – safe (monotone) ver-
sion of AVI [4].
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