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Introduction

It is well-known that accelerated gradient first order methods possess
optimal complexity estimates for the class of convex smooth minimization
problems. In many practical situations, it makes sense to work with inexact
gradients. However, this can lead to the accumulation of corresponding
inexactness in the theoretical estimates of the rate of convergence. We
propose some modification of the methods for convex optimization with
inexact gradient based on the subspace optimization sush as Nemirovski’s
Conjugate Gradients and Sequential Subspace Optimization. We research
the convergence for different condition of inexactness both in gradient value
and accuracy of subspace optimization problems. Besides this, we investigate
generalization of this result to the class of quasar-convex (weakly-quasi-
convex) functions.

Contributions

1.Linear convergence for inexact CG method in non-convex case with.
2.Complexity of auxiliary problems for SESOP and CG methods in convex

case using Ellipsoid Method and Multidimensional dichotomy.

1 Problem Statement

We consider an optimization problem

min f (x)

where f is L-smooth function (∥∇f (x)−∇f (y)∥ ⩽ L∥x−y∥ ∀x, y ∈ Rn)
and gamma-quasar function

f (x∗) ≥ f (x) +
1

γ
⟨∇f (x), x∗ − x⟩. (1)

where γ ∈ (0, 1] and x∗ is a minimizer.
In our paper we consider methods that can work with inexact gradient
g : Rn→ Rn:

∥g(x)−∇f (x)∥ ⩽ δ. (2)
Besides, we will consider the following conditions:

•PL-condition f (x)− f ∗ ⩽ 1
2µ∥∇f (x)∥

2 ∀ x ∈ Rn,

•Quadratic Growth Condition f (x)− f ∗ ⩾ µ
2∥x− x∗∥2 ∀ x ∈ Rn.

2 Subspace Optimization Method

2.1 A modification of the SESOP method with an inexact gradient

Let us define d0
k = g(xk), d1

k = xk − x0, d2
k =

k∑
i=0

ωig(xi) and wk+1 =

1
2 +
√

1
4 + w2

k with w0 = 1. Then update variable in SESOP method is given
by the following expression:

τk ← arg min
τ∈R3

f

(
xk +

3∑
i=1

τ1d
i−1
k

)

xk+1← xk +

3∑
i=1

τ1d
i−1
k

2.2 A modification of Nemirovski’s Conjugate Gradient method with an
inexact gradient

Let us define qk = qk−1 + g(x̂k). Then one iteration of CG method is given
by the following form:

x̂k ← arg min
x∈Xk

f (x), where Xk = x0 + Lin(xk − x0, qk)

xk = x̂k −
1

2L
g(x̂k)

3 Main Results

Previous paper states that SESOP method does not accumulate error. At
this work, we provide estimation for number of calculations low-dimensional
gradient.
Theorem 1. To approach quality ε on initial problem by SESOP
method one requires not more than N =

⌈√
40LR2

γ2ε

⌉
of inexact gradient

calculations with respect to x and not more than M =
⌈
18N ln 12800LBCN

ε4

⌉
of inexact gradient calculations with respect to τ.

It gives us a method that has convergence rate similar to accelerated
methods but this method does not accumulate error. This is achieved by
solving an auxiliary low-dimensional problem. The second considered method
is Conjugate Gradient with restarts and stopping rule.
Theorem 2. Let assumptions of Theorem ?? hold and all subproblems
are convex. Besides, there is R such that x̂k − xk ∈ BRx

for all k. Each
point x̂k is output of two-dimensional dichotomy algorithm (see [?]) after
M steps, where M is given by M =

⌈
16
(
ln CRx

ε4

)2⌉
Let one of the following alternatives hold:

1.CG method makes K =
⌈

2
1−α log 1

ε

⌉
restarts and T =

⌈
8
γ

√
L
µ

√
1+α
1−α

⌉
,

iterations per each restart, where ε = 64
γ2µδ

2
1

2.For some iteration N ≤ N ∗, at the N-th iteration of Nemirovski’s
Conjugate Gradient method, the stopping criterion ∥g(xN)∥ ≤ 8

γδ1 is
satisfied for the first time.

Then for the output point x̂ (x̂ = xN or x̂ = xN∗) of Nemirovski’s
Conjugate Gradient method, the following inequalities hold: f (x̂)−f ∗ ⩽
64δ21
γ2µ .

As the result the algorithm requires not more N of calculations of inexact
gradient with respect to x and MN = O(ln3(1/ε)) of low-dimensional
inexact gradient calculations.

4 Numerical Experiments

We consider the problem of logistic regression with ℓ2-regularization:

f (x) = (1/m)

m∑
j=1

log(1 + exp(−yj⟨fj, x⟩)) + µ∥x∥2 (3)

δ1 SESOP CG+Ellipsoids CG+Dichotomy STM
10−3 1 1.4 0.9 1.7
10−5 10.1 15.3 9.5 13.8
10−7 35.3 60.9 36.8 42.1

Time comparison (s) for problem (3)
Subspace methods outperform Similar Triangle Method.


