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Consensus Problem

Consider a network of agents represented by an undirected finite graph
G = (V,E), where V = {1, . . . , n} represents the set of vertices (agents)
and E represents the set of edges (communication links). Each agent i holds

an initial vector x(i)0 ∈ Rd. We denote by x0 =

((
x
(1)
0

)⊤
, . . . ,

(
x
(n)
0

)⊤
)⊤

.
The goal is to design efficient algorithms that allow each agent to quickly
compute the average value x0 = 1

n

∑n
i=1 x

(i)
0 , with the constraint that at each

iteration of the algorithm, agents can only exchange their vectors with their
neighbors.
To achieve consensus on the graph G, we solve the following problem starting

with the initial vector x0:

min
x∈Rnd

f (x) =
1

2
xTLx, (1)

where L = L⊗ Id, the symbol ⊗ denotes the Kronecker product, and L is a
gossip matrix, which is defined as follows
Definition 1. A gossip matrix L ∈ Rn×n on the graph G = (V,E) is a
matrix satisfying following properties:
1.L is an n× n symmetric matrix,
2.L is positive semi-definite,
3.ker(L) = span(1), where 1 = (1, . . . , 1)⊤,
4.L is defined on the edges of the network: Lij ̸= 0 only if i = j or
(i, j) ∈ E.

Polynomial-Based Iterative Methods

We consider first-order methods or gradient-based methods to solve the
problem (1). These are methods in which the sequence of iterates xt is in the
span of previous gradients, i.e.,

xt+1 ∈ x0 + span{∇f (x0), . . . ,∇f (xt)}. (2)

Lemma 1.Let xt be generated by a first-order method of kind (2). Then
there exists a polynomial Pt of degree t such that Pt(0) = 1 and it verifies

xt − x∗ = Pt(L)(x0 − x∗) (3)

The polynomial Pt is called the residual polynomial.

Average-case analysis

Definition 2. Let L be a random matrix with eigenvalues {λ1, . . . , λn}.
The empirical spectral distribution of L is the probability measure

µL(λ) =
1

n

n∑
i=1

δλi
(λ), (4)

where δλi
is the Dirac delta. Since L is random, the empirical spectral

distribution µL is a random measure. Its expectation over L,

µ = EL [µL] (5)

is called the expected spectral distribution
Theorem 1. Let xt be generated by a first-order method, associated to
the polynomial Pt. Then we can decompose the expected error at iteration
t as

E∥xt − x∗∥2 = R2

∫
P 2
t dµ. (6)

Spectrum of regular graph

Figure 1: Regular graphs with n = 20, k = 3.

dµ(λ) =
k

2π

√
4(k−1)

k2 − (1− λ)2

1− (1− λ)2
dλ (7)
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Figure 2: Spectrum of regular graph with n = 5000, k = 3.

Optimal method

Algorithm 1 Optimal average-case method for regular graphs
Input: starting guess x0, regular parameter k, δ0 = k

k+1.
Initialize: x1 = x0 − δ0 · Lx0
for t = 1, 2, . . . do

δt =
(
1− k−1

k2
· δt−1

)−1

xt+1 = xt + (δt − 1)(xt − xt−1)− δt · Lxt
end for

Theorem 2. If we apply Algorithm 1 to problem (1), where L is the
gossip matrix of random k-regular graphs, then

E∥xt − x∗∥2 = Θ

(
1

k − 1

)t

·

 1

1 + 2
k−2

(
1− 1

(k−1)t

)


2
 . (8)
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Figure 3: Comparison of convergence speeds of algorithms on regular graphs.


