
ICOMP 2024

Skoltech AI & Supercomputing Laboratory

Authors Keywords TL;DR

Introduction Objectives

Process & Methods

Conclusions

Main references

2024

Skoltech

Neural Networks
for

Structured Grid Generation

Neural Network, Curvilinear
Coordinate System, Structured Grid,
Partial Differential Equation, Finite
Difference Method, Physics-Informed
Neural Network, Geometric Modelling

A modern method for creating structured grids using
neural networks, which serves as a specific instance
of PINN solvers for the Winslow equation.

We investigate a novel neural network (NN) - based approach to generate 2-dimensional body-
fitted curvilinear coordinate systems (BFCs) that allow to stay on regular grids even when the
complex geometry is considered. We describe a neural network as a geometric transformation
that can represent a diffeomorphism under certain constraints and approximations, followed by
the ways of training it to create BFCs. We show that the optimization system is similar to a
physics-informed neural network (PINN) – based solution of Winslow equations. Unlike in
classical BFC generation, NN provide a differentiable mapping between spaces, allowing to
change an interior nodes distribution without the need of recreating the whole mapping.

The methodology involves using a feed-forward and residual neural networks to represent
geometric transformations that can map simple computational grids to curved physical domains.
The training is processed by using non-convex optimization algorithms such as SGD or Adam.
The paper discusses two main approaches:
1. non-PINN approach focuses on minimizing a point-wise loss function to ensure the boundary

predictions fit the physical domain with additional constraints on weights of the network,
ensuring that each transformation between two consecutive layers is a bijective map. It lacks
expressiveness as obtained formulas were derived only for constant-width neural network
with just two neurons per hidden layer, so many complex geometries are out of capabilities of
such a setup.

2. PINN approach adds an interior loss term to make grid distribution conformal by minimizing
the Winslow functional. It shows better convergence, however, in some cases the discretized
nature of optimization process leads to degeneracies.

It was shown that a neural network can be used for body-fitted curvilinear coordinate system
generation with further application to finite-difference solvers of partial differential equations.

While usually neural networks are considered black-box functions, several methods can be used
to constraint Jacobians through weights control and mesh loss functions. Benefits of such a grid
generation relative to discrete schemes of Winslow equations and others, are that it allows to
vary the interior points distribution on the computational domain and compute metric tensors
exactly, leading to better representations of differential operators. The use of BFC can be
justified, for example, in inverse problem to find estimations of parameters on sparse grids,
because it is fast and captures the boundary much better than a staircase approximation.

Still, the grid generator is far from being robust in terms of convergence in a soft loss setup.
Further investigation implies the analysis of hard-constrained PINN solvers and interpretations
of neural network in that case. Also, such features as 3D domain processing and time-dependent
boundaries are to be investigated and still remain an open question.

• Outline theoretical basis of Neural Networks as geometric transformations
• Discover optimization algorithms to perform BFC generation
• Outline the methods to make generated grids regular
• Find a network architecture that will benefit from the specificity of the task relative to usual

PINN setup
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Fig 1.: mesh refinement as a single forward pass through a proposed 
neural network architecture
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Formula 1: data loss term 
that matches boundaries

Formula 2: discretized Winslow 
functional, physical loss term

(a) Trans-Finite Interpolation

(b) non-PINN approach 
without constraints

(c) non-PINN approach with 
derived constraints

(d) PINN approach with 
Fourier features

Fig 2.: grids generated with different methods for a single shape
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