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Introduction and Motivation

We consider the unconstrained minimization problem of a
smooth convex function:

min
x∈Rn

f (x)

Main Contributions:

• We present a stochastic extension of the algorithm based
on Gauss-Seidel discretization of the ODE related to the
accelerated gradient method.

• We provide an asymptotic convergence analysis for strongly
convex quadratic objectives and identify the maximum
feasible learning rate.

• We demonstrate experimentally that NAG-GS converges
faster in the initial epochs and achieves similar or better
final test accuracy on logistic regression, VGG-11, ResNet-
20, and Transformer models.

Proposed Method

Accelerated Stochastic Gradient Flow:

dx

dt
= v − x,

dv

dt
=

µ

γ
(x− v)− 1

γ
∇f (x) + σ

dW

dt
,

γ̇(t) = µ− γ(t)
γ(0) = γ0 > 0

where µ is the strong convexity parameter, and W is a
standard n-dimensional Brownian motion.

Gauss-Seidel Discretization:

xk+1 = (1− ak)xk + akvk,

vk+1 = (1− bk)vk + bkxk+1 − µ−1bk∇f̃ (xk+1),

where ak and bk are step size parameters, and ∇f̃ (xk+1) is
the possibly noisy gradient.

Theorem: For f (x) = 1
2x

⊤Ax, with A symmetric positive
definite, and assuming 0 < µ = λ1 ≤ . . . ≤ λn = L < ∞,

and given γ ≥ µ, if 0 < α ≤ µ+γ+
√

(µ−γ)2+4γL

L−µ , then the
NAG-GS method converges.

Algorithm: Nesterov Accelerated Gradient with
Gauss–Seidel splitting (NAG-GS)
Input: Initial point x0, parameters µ ≥ 0, γ0 > 0
Set v0 := x0
for k = 1, 2, . . . do

Choose step size αk > 0
Set ak := αk(αk + 1)−1

Update γk+1 := (1− ak)γk + akµ
Update xk+1 := (1− ak)xk + akvk
Set bk := αkµ(αkµ + γk+1)

−1

Update vk+1 := (1− bk)vk + bkxk+1 − µ−1bk∇f̃ (xk+1)
end

Experiments

Strongly convex quadratics
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(a) µ = 1, L = 10
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(b) µ = 10−1, L = 100

Figure 1: Dependence of the number of iterations needed for
convergence on the learning rate. NAG-GS is more robust with
respect to the learning rate than gradient descent (GD) and ac-
celerated gradient descent (AGD). The number of iterations 1010

indicates the divergence.

ResNet-20 on CIFAR-10
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Figure 2: NAG-GS outperforms SGD-MW uniformly in the first
150 epochs and provides the same accuracy further.

VGG-11 on CIFAR-10
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Figure 3: Comparison of the convergence of NAG-GS and
SGD-MW with the best learning rates. NAG-GS gives a higher
test accuracy faster than SGD-MW (see 1–10 epochs) while
converging to a similar test accuracy in the middle of training.

Vision Transformer on food101

Stage NAG-GS AdamW

After 1 epoch 0.8419 0.8269
After 25 epochs 0.8606 0.8324

Table 1: Test accuracies of NAG-GS and AdamW for Vi-
sion Transformer model fine-tuned on food101 dataset. The
NAG-GS outperforms AdamW after the presented number of
epochs.

RoBERTa on GLUE benchmark

Optimizer CoLA MNLI MRPC QNLI QQP

AdamW 61.60 87.56 88.24 92.62 91.69
NAG-GS 61.60 87.24 90.69 92.59 91.01

Optimizer RTE SST2 STS-B WNLI

AdamW 78.34 94.95 90.68 56.34
NAG-GS 77.97 94.50 90.21 56.34

Table 2: Note that NAG-GS has lower computational com-
plexity and memory requirements than AdamW.
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