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Distributed heterogeneous computing consists of a set P where p; € P is
heterogeneous executors with fully connected topology, for which defined:

 Computational cost matrix D, where D%/ = w; ; is the execution time
required for executor p; € P to process node v; € |
* Each executor has a defined type; to execute task v; on p; it is required

that their types match
Goal is to construct mapping of nodes from DAG to executors, such that
makespan — min
where makespan is max(actual finish time of v).

Directed acyclic graph (DAG) G = (J,E); J- set of nodes, E — set of edges:
* Node v € ] represent a computational task (job) with a given type of
executor that it should be executed upon

 Edge (vi, vj) € E denotes precedence constraint, i.e. node v; cannot be

executed until v; and all its other predecessors are not complete
* Node without predecessors — entry node, without successors — exit node;
there can be multiple of both types in a given DAG

* Cost of communication is b; ; defined for all edges (vl-, vj) € E and should
accounted for if v; and v; are executed by different executors
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[ Online vs offline scheduling I Example |
Online sliding informational window: at each given moment the scheduler N makespar
observes only ready-to-execute nodes and their immediate successors within : CPU I :
the informational window with length 2. This limits amount of information and cruz [ l
Schedule I
makes problem online: graph is not known in advance, opposite to offline case T |oruz ¥ o | ~ oo | oo |
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At each moment of time t, executors calculate a probability of assignment of a (&) Loqond

given task (node). Probability is calculated as a ratio of a given node’s
aggregated metric to sum of all other observable nodes aggregated metrics. It
Is constructed from following characteristics of a DAG and executors:

* Incoming connections — ratio that represent how many unfinished parent[ Evaluation }

nodes has each of a given node’s child nodes W; DAGs generated DAGGEN [2] —industry standard for evaluating DAG heuristics
* Available nodes - ratio of tasks of a matching to the given executor’s type « Executors: 3,6, 12, 24 (with n executors of each type 1, 3, 4, 8)
that are ready-to-be-executed Q; * Number of nodes: 3000, 6000, 12000, 24000 respectively to executors
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CPU node that requires 4 computuational X amount of work required to pass result of A as an
resources to be executed input of B (network transmission, context switch, etc.)

* Relative performance difference — difference between minimum execution = 3%

—e— MIN_MAX

time of a given node by all executors to a given executor Z;
Coefficients for sub-metrics are calculated using genetic algorithm with single-
point crossover and random mutation, and selective fixed-size elitism.
Assignment probabilities are synchronized using Local Voting Protocol (LVP):
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Average % of

Each executor shares its task assignment probabilities with neighboring makespan
executors that iteratively update their task probabilities based on the state of improvement
their neighbors and consensus is reached when the difference in task by MLVP

assignment probabilities across all neighboring executors falls below a
predefined threshold (¢ = 0.05)

[ Offline methods [1, 2] } 0_

MARL [1] first level — make ordered list of tasks to be executed by each type of

resource Via Multi_Age nt Proximal PO“CY Optimization With agent for each type | 3000 nodes, 3 executors ' 6000 nodes, 6 executors Work'space 12000 nodes, 12 executors 24000 nodes, 24 executors
* State: matrix of 13 DAG metrics [1] for each buffer of ready-to-execute node .. [ |« T [ T LT Tl s T
with pre-defined length (hyperparameter) § LT, 1 o
. . . . o1 [ — a0
* Action: select metric by which order the list of ready-to-executed nodes T N i
buffer J J " J I
 Reward: normalized difference between MILP and MARL makespan after o g . | | of LT I 1
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Second level — allocate tasks from ordered list using Earliest Finish Time (EFT) Box plot percentage improvements in makespans MLVP vs other algorithms
NN [2] First level — make ordered list of tasks to be executed by each type: [

* Single agent : Neural Network trained using Genetic Programming approach PredICtmg DAG [3] }

* Genetic programming allows to skip construction of differentiable Use machine learning approaches [3] to predict computational tasks and
makespan improvement function dependencies between them for accurate prediction of the next task’s

* Features: 8 DAG metrics [3] + type properties and its dependencies to the existing task to extend online
* Architecture: 3 fully connected layers + Genetic Programming algorithm method’s DAG knowledge and capabilities T
Second level — allocate tasks from ordered list using Earliest Finish Time (EFT)

Adjancency Matrix |

Table 5 Similarity between Original and Predicted DAGs i
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