
Multi-Agent Local Voting Protocol For Online DAG Scheduling
Nickolay Zhitnukhin1, Anastasia Zhadan1, Ivan Kondratov1, Alexander Allahverdyan1,
Ovanes Petrosian1, Aleksei Romanovskii2, Vitaliy Kharin2

Graph Scheduling / Distributed Heterogeneous Computing

Online sliding informational window: at each given moment the scheduler
observes only ready-to-execute nodes and their immediate successors within
the informational window with length 2. This limits amount of information and
makes problem online: graph is not known in advance, opposite to offline case

At each moment of time 𝑡, executors calculate a probability of assignment of a
given task (node). Probability is calculated as a ratio of a given node’s
aggregated metric to sum of all other observable nodes aggregated metrics. It
is constructed from following characteristics of a DAG and executors:
• Incoming connections – ratio that represent how many unfinished parent

nodes has each of a given node’s child nodes 𝑊𝑡

• Available nodes – ratio of tasks of a matching to the given executor’s type
that are ready-to-be-executed 𝑄𝑖

• Relative performance difference – difference between minimum execution
time of a given node by all executors to a given executor 𝑍𝑖

Coefficients for sub-metrics are calculated using genetic algorithm with single-
point crossover and random mutation, and selective fixed-size elitism.
Assignment probabilities are synchronized using Local Voting Protocol (LVP):
Each executor shares its task assignment probabilities with neighboring
executors that iteratively update their task probabilities based on the state of
their neighbors and consensus is reached when the difference in task
assignment probabilities across all neighboring executors falls below a
predefined threshold (ε = 0.05)

Directed acyclic graph (DAG) 𝐺 = 𝐽, 𝐸 ; 𝐽- set of nodes, 𝐸 – set of edges:
• Node 𝑣 ∈ 𝐽 represent a computational task (job) with a given type of

executor that it should be executed upon

• Edge 𝑣𝑖 , 𝑣𝑗 ∈ 𝐸 denotes precedence constraint, i.e. node 𝑣𝑗 cannot be

executed until 𝑣𝑖 and all its other predecessors are not complete
• Node without predecessors – entry node, without successors – exit node;

there can be multiple of both types in a given DAG

• Cost of communication is 𝑏𝑖,𝑗 defined for all edges 𝑣𝑖 , 𝑣𝑗 ∈ 𝐸 and should

accounted for if 𝑣𝑖 and 𝑣𝑗 are executed by different executors

Distributed heterogeneous computing consists of a set 𝑃 where 𝑝𝑖 ∈ 𝑃 is
heterogeneous executors with fully connected topology, for which defined:

• Computational cost matrix 𝐷, where 𝐷𝑖,𝑗 = 𝑤𝑖,𝑗 is the execution time

required for executor 𝑝𝑖 ∈ 𝑃 to process node 𝑣𝑗 ∈ 𝐽

• Each executor has a defined type; to execute task 𝑣𝑗 on 𝑝𝑖 it is required

that their types match
Goal is to construct mapping of nodes from 𝑫𝑨𝑮 to executors, such that

𝑚𝑎𝑘𝑒𝑠𝑝𝑎𝑛 → 𝑚𝑖𝑛
where makespan is max

𝑣∈𝑉
𝑎𝑐𝑡𝑢𝑎𝑙 𝑓𝑖𝑛𝑖𝑠ℎ 𝑡𝑖𝑚𝑒 𝑜𝑓 𝑣 .

Saint Petersburg State University1

Huawei Russian Research Institute2

Online vs offline scheduling

MLVP

Evaluation

Example

DAGs generated DAGGEN [2] – industry standard for evaluating DAG heuristics
• Executors: 3, 6, 12, 24 (with 𝑛 executors of each type 1, 3, 4, 8)
• Number of nodes: 3000, 6000, 12000, 24000 respectively to executors

Average % of

makespan

improvement

by MLVP

3000 nodes 6000 nodes 12000 nodes 24000 nodes

Box plot percentage improvements in makespans MLVP vs other algorithms

Offline methods [1, 2]

Predicting DAG [3]
Use machine learning approaches [3] to predict computational tasks and
dependencies between them for accurate prediction of the next task’s
properties and its dependencies to the existing task to extend online
method’s DAG knowledge and capabilities

[1] Multi-agent Reinforcement Learning-based Adaptive Heterogeneous DAG Scheduling, ACM Transactions on Intelligent Systems and Technology, Volume 14, Issue 503, 2023, pp 1–26

[2] Heterogeneous Computational Scheduling using Adaptive Neural Hyper-heuristic, Doklady Mathematics (accepted, will be printed next month) [3] DAGCN: hybrid model for efficiently handling joint node and link prediction in cloud workflows. Appl Intell 54, 12505–12530 (2024). https://doi.org/10.1007/s10489-024-05828-w

MARL [1] first level – make ordered list of tasks to be executed by each type of
resource via Multi-Agent Proximal Policy Optimization with agent for each type
• State: matrix of 13 DAG metrics [1] for each buffer of ready-to-execute node

with pre-defined length (hyperparameter)
• Action: select metric by which order the list of ready-to-executed nodes

buffer
• Reward: normalized difference between MILP and MARL makespan after

each DAG scheduled (training on a batch of DAGs at once)
Second level – allocate tasks from ordered list using Earliest Finish Time (EFT)
NN [2] First level – make ordered list of tasks to be executed by each type:
• Single agent : Neural Network trained using Genetic Programming approach
• Genetic programming allows to skip construction of differentiable

makespan improvement function
• Features: 8 DAG metrics [3] + type
• Architecture: 3 fully connected layers + Genetic Programming algorithm
Second level – allocate tasks from ordered list using Earliest Finish Time (EFT)

	Slide 1

