Multi-Agent Local Voting Protocol For Online DAG Scheduling

Nickolay Zhitnukhin¹, Anastasia Zhadan¹, Ivan Kondratov¹, Alexander Allahverdyan 1 ,

Ovanes Petrosian¹, Aleksei Romanovskii², Vitaliy Kharin²

Saint Petersburg State University¹ Huawei Russian Research Institute²

Центр искуственного интеллекта
и науки о данных СПбГУ

IC (O) MIP

INTERNATIONAL CONFERENCE ON COMPUTATIONAL OPTIMIZATION

Graph Scheduling / Distributed Heterogeneous Computing

- **Directed acyclic graph (DAG)** $G = (J, E)$; J set of nodes, E set of edges:
- Node $v \in J$ represent a computational task (job) with a given type of executor that it should be executed upon
- Edge $(v_i, v_j) \in E$ denotes precedence constraint, i.e. node v_j cannot be executed until v_i and all its other predecessors are not complete
- Node without predecessors entry node, without successors exit node; there can be multiple of both types in a given DAG
- Cost of communication is $b_{i,j}$ defined for all edges $(v_i, v_j) \in E$ and should accounted for if v_i and v_j are executed by different executors

Online sliding informational window: at each given moment the **scheduler observes** only **ready-to-execute** nodes and their **immediate successors** within the **informational window with length 2**. This limits amount of information and makes problem online: **graph is not known in advance**, opposite to offline case

At each moment of time t , executors calculate a probability of assignment of a given task (node). Probability is calculated as a ratio of a given node's **aggregated metric** to sum of all other observable nodes **aggregated metrics.** It is constructed from following characteristics of a DAG and executors:

- **Incoming connections** ratio that represent how many unfinished parent nodes has each of a given node's child nodes W_t
- **Available nodes –** ratio of tasks of a matching to the given executor's type that are ready-to-be-executed Q_i
- **Relative performance difference –** difference between minimum execution time of a given node by all executors to a given executor Z_i

Coefficients for sub-metrics are calculated using genetic algorithm with singlepoint crossover and random mutation, and selective fixed-size elitism. Assignment probabilities are synchronized using **Local Voting Protocol (LVP):** Each executor shares its task assignment probabilities with neighboring executors that iteratively update their task probabilities based on the state of their neighbors and **consensus** is reached when the difference in task assignment probabilities across all neighboring executors falls below a predefined threshold (ϵ = 0.05)

Distributed heterogeneous computing consists of a set P where $p_i \in P$ is heterogeneous executors with fully connected topology, for which defined:

- Computational cost matrix D, where $D^{i,j} = w_{i,j}$ is the execution time required for executor $p_i \in P$ to process node $v_i \in J$
- Each executor has a defined type; to execute task v_j on p_i it is required that their types match

Goal is to construct mapping of nodes from DAG to executors, such that

 $makespan \rightarrow min$ where makespan is max $v \in V$ actual finish time of v).

- **Executors:** 3, 6, 12, 24 (with n executors of each type 1, 3, 4, 8)
- **Number of nodes:** 3000, 6000, 12000, 24000 respectively to executors

Use machine learning approaches [3] to **predict computational tasks and dependencies between them** for accurate prediction of the next task's properties and its dependencies to the existing **task to extend online method's DAG knowledge and capabilities** Input Layer

[1] Multi-agent Reinforcement Learning-based Adaptive Heterogeneous DAG Scheduling, ACM Transactions on Intelligent Systems and Technology, Volume 14, Issue 503, 2023, pp 1–26 [2] Heterogeneous Computational Scheduling using Adaptive Neural Hyper-heuristic, Doklady Mathematics (accepted, will be printed next month) [3] DAGCN: hybrid model for efficiently handling joint node and link prediction i

Table 5 Similarity between Original and Predicted DAGs

Table 4 Prediction Quality

[Task Feature, liancency Matrix¹

MARL [1] first level – make ordered list of tasks to be executed by each type of resource via Multi-Agent Proximal Policy Optimization with agent for each type

Online vs offline scheduling

MLVP

Example

DAGs generated DAGGEN [2] – industry standard for evaluating DAG heuristics

Offline methods [1, 2]

- **State**: matrix of 13 DAG metrics [1] for each buffer of ready-to-execute node with pre-defined length (hyperparameter)
- **Action**: select metric by which order the list of ready-to-executed nodes buffer
- **Reward:** normalized difference between MILP and MARL makespan after each DAG scheduled (training on a batch of DAGs at once)
- **Second level –** allocate tasks from ordered list using Earliest Finish Time (EFT) **NN [2] First level –** make ordered list of tasks to be executed by each type:
- **Single agent :** Neural Network trained using Genetic Programming approach
- **Genetic programming allows to skip construction of differentiable makespan improvement function**
- **Features**: 8 DAG metrics [3] + type
-

• **Architecture:** 3 fully connected layers + Genetic Programming algorithm **Second level –** allocate tasks from ordered list using Earliest Finish Time (EFT)

