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Overview

We consider the problem of forecasting travel demand in a trans-
portation system. This problem arises in
• the management of infrastructure development
• the land use planning
• the policymaking for maintaining sustainable transportation sys-
tems.

1. Traditional Four-Step Procedure

Figure: The classic four-stage transport model

Trip Distribution
• Li number of departures from zone i ∈ O
• Wj number of arrivals to zone j ∈ D
• Tij generalized cost for travelling from zone i to j
• dij number of trips from zone i to j
• γ calibration parameter

Entropy Maximizing Model
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Modal Split
• dam

ij number of trips from zone i to j by mode m and agent a
• T m

ij generalized cost of travelling from i to j by mode m
• M(a) set of modes available to type a agents
• αam, βam calibration parameters

The Multinomial Logit Model (MNL)
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Traffic assignment
Beckmann model

x∗ is an equilibrium state if and only if x∗ is a minimum of the
potential function:

Ψ(f (x)) =
∑
e∈E

∫ fe

0
τe(z)dz︸ ︷︷ ︸
σe(fe)

→ min
f=Θx: x∈X

,

where τe(z) is a monotone increasing function of the link flow z.

BPR-function:

τe(fe) = t̄e
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(
fe

f̄e

)1
µ

 , ρ = 0.15, µ = 0.25,

where t̄e – free flow time, f̄e[veh/hour] – link capacity. Dual problem:
Q(t) =

∑
ij∈OD

dijTij(t) −
∑
e∈E

σ∗
e(te)︸ ︷︷ ︸

h(t)
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t≥t̄

, (1)

where σ∗
e(te) is the Fenchel conjugate function of σe(fe), e ∈ E.

Stable dynamics model [3]

τe(fe) =


t̄e, 0 ≤ fe < f̄e,[
t̄e, ∞

]
, fe = f̄e,

+∞, fe > f̄e.

The pair (f ∗, t∗) is an equilibrium if and only if it is a solution of
the saddle-point problem

S(f (x), t) = 〈t, f〉 − 〈t − t̄, f̄〉︸ ︷︷ ︸
h(t)

−→ min
f=Θx:
x∈X
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t≥t̄

,

2. Refined: Network equilibrium model (NE)

According to [1], the combined distributionmodal splitassignment
problem can be formulated as follows:

P3(f, d) = Ψ(f ) + H(d) → min
f=Θx, x∈X(d)

d∈Π′(l,w)

, (P3)

where
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∑
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The saddle-point problem:
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∑
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(S3)
where T a

ij(t) = − 1
αa

ln
(∑

m exp
(
−αaT

m
ij (t) − βam

))
, T m

ij (t) is the
minimal cost of the path from i ∈ O to j ∈ D with the links cost
te + cm

e .
The dual problem is

D3(t) = min
d∈Π(l,w)

E(d, T (t))︸ ︷︷ ︸
−Φ(t)

−h(t) −→ max
t≥t̄

, (D3)

3. Evans Algorithm
1. For each edge e ∈ E calculate the costs τe that correspond to the

flows fk
e .

2. For each origin vertex i ∈ O find the minimum Tij of travelling to
each destination j ∈ D and choose a minimum cost route from i
to j.

3. Find a new set of trip distributions qij, given the new Tij costs.
4. Assign the new demands qij to the minimum cost routes chosen

in Step 2 to obtain a new flow vector y ∈ R|E|

5. Find the linear combination (1 − λ)(fk, dk) + λ(y, q), 0 ≤ λ ≤ 1,
of (fk, dk) and (y, q) that minimizes the objective function P3 and
denote this combination by (fk+1, dk+1).

6. Return to Step 1 replacing k by k + 1.

4. Dual method for NE problem

Here we used the following notations:

φ0(t) = 1
2

∥∥∥t − t0
∥∥∥2

2
,

φk+1(t) = φk(t) + αk+1
[
Φ̃(yk+1) +

〈
∇̃Φ(yk+1), t − yk+1

〉
+ h(t)

]
.

Note that we did not specify the stopping criterion as it can be
different for different models
Algorithm Universal Method of Similar Triangles

Require: L0 > 0, starting point t0, accuracy ε > 0
1: u0 := t0, A0 := 0, k := 0
2: repeat
3: Lk+1 := Lk/2
4: while true do
5: αk+1 := 1

2Lk+1
+
√

1
4L2

k+1
+ Ak

Lk+1
, Ak+1 := Ak + αk+1

6: yk+1 := αk+1u
k+Aktk

Ak+1

7: uk+1 := arg min
t∈dom h

φk+1(t)

8: tk+1 := αk+1u
k+1+Aktk

Ak+1

9: if Φ̃(tk+1) ≤ Φ̃(yk+1) +
〈
∇̃Φ(yk+1), tk+1 − yk+1

〉
+

Lk+1
2

∥∥∥tk+1 − yk+1
∥∥∥2

2
+ αk+1

2Ak+1
ε then

10:

11: else
12: Lk+1 := 2Lk+1
13: end if
14: end while
15: k := k + 1
16: until Stopping criterion is fulfilled

Main Contributions

� We propose a way to solve the dual problem of the nested
combined model of [1] with a universal accelerated gradient
method USTM [2];

� We extend the nested combined model to the case of
capacitated networks: namely, we propose NE with the stable
dynamics [3] traffic assignment model;

� We provide theoretical upper bounds on the complexity
of searching network equilibrium by the USTM algorithm.
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5. Numerical Experiments

Figure: Moscow network link loads (the combined Beckmann model)

• road network: 63073 nodes 94546 arcs (roads, permitted turns at
the intersections)
• 1420 transportation zones
• trip purposes: home-work, home-other
• users types: car-owners, non-car-owners
• travel modes: by foot, car, and public transport
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Figure: Duality gap convergence
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Figure: 2-Dimensional projections of dm
ij trajectories for the Evans algorithm and

the Four-stage procedure, obtained by multidimensional scaling. The trajectory of
the Evans method is sparsified to 50 points. The last point is marked with a large
cross
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Figure: Histograms of the network load: a) histogram of the ratio of the amount
of flow on the link to its capacity, b) histogram of the ratio of the travel time on
the link to the travel time on the same link when it is free
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