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Leveraging approximate matmul techniques, RMM divides gradient estima- Figure 1: Visualization support for Lemma 1. Figure 2: Evolution of estimate variances in training time.

tion Vi, £ = Y X in two steps
can be evaluated as follows
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Lemma 1 (Aposteriori variance of SGD) Let X € RP*% and Y € RB*dou where o = HX YHF/(”X”F”Y”F)’ o €[0,1) - 2 62.38 15:27
be the input to the linear layer in the forward pass and the input to it in the E . 5 59.11 15:38
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backward pass (B here is the batch size). Then, we can estimate the variance
of the noise induced by a random selection of the samples as
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wherez, = X'e,,,y. =Y 'e,,,k=1,..., B, ie., z, and y, are the columns
of X' and Y'', respectively.

Lemma 2 (Apriori variance of RMM) Let X € RB*% and Y € RB* %o,
then the variance of a randomized matrix multiplication through a matrix S €

RB*Bomi with 1.i.d. elements following the normal distribution N (Oa B;)j/Q)

defined as

D*(X,Y) =Eg||XTSSTY — XTY|” (4)

Most of the experiments are carried out with ROBERTA,,. on GLUE bench-
mark. Table 1 demonstrates how model performance changes with compres-
sion rate K = B/B, .
rem 1. Table 2 presents ablation study experiment on choice of matmul. Mem-

Figure 2 confirms empirically the statement of Theo-

ory savings measurements are shown in Table 3.

Table 1: Fine-tuning on GLUE benchmark for different compression rates k.

Table 3: Memory usage during training on GLUE.
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MRPC 1 11.3 0.0
2 10.6 6.3

5 9.2 19.3

10 8.7 23.3

QNLI 1 11.7 0.0
2 11.2 4.2

5 10.4 11.6

10 10.1 13.8
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