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Motivation

Federated Learning — what it is and why?




ML — past and present
Yandex Ads

ML success:

. large-scale training infrastructures
. the vast amounts of training data

Negative privacy implications of data
collection

* Privacy Initiatives:
. GDPR (European Commission)
. Learning with Privacy at Scale (Apple)

e We need to bring training to the edge
(decentralized)

 Data locality paradigm (lower carbon
footprint of distributed learning)




The problem setting Fig ez

model parameters

N min 4 f(z) == fite)
1=1
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The problem Fig uez

model parameters
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The problem Fig uez

filz)  folz) f3(w)

loss on the data accessible on worker i

N

\

n workers/clients



The problem .

model parameters

min Z filz

CCEI%@ z 1 /
/\ - . a
‘) How can we train

I;i D [] - the ML model in a
filz)  folx)

i

A ;
() folz)  f3(z)  falz) @ distributed way:

J Key features:
 The problem is hard to solve for one client
* Clients do not know each other

=
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n workers/clients



Parallel SGD

Iteration k:

1.

Server broadcasts x*




Parallel SGD

Iteration k:

1.
2.

Server broadcasts x*
Workers compute stochastic gradients




Parallel SGD “n waz

Iteration k:

1. Server broadcasts x*

2. Workers compute stochastic gradients

3. Server averages the stochastic gradients and

makes an SGD step %
S S

Is this the correct A
approach? Should
we re-weight
updates in practice?

2 |G




Parallel SGD — bottlenecks

Idle time:i

Time taken to wasted at

compute gradients faster
and send them to workers
the PS

What are the b

issues with
this approach?

4

. Each optimization iteration needs

two communications

. We need to communicate d - 4 bytes

each way

. Some workers can “die” during the

training

. Some workers can be much slower

then others, leading to delays



Use-case 1 - Training Image-net

e SGD is awesome method
e Fast computation
(each iteration = just one gradient)

Challenge: How to utilize a huge
computer cluster?

Idea: Choose subset of
functions (batch) and use the
average of their gradients

But: No free lunch
® More samples doesn’t mean
reduction of learning time
e Often, the optimal batch is
around 128 (too much commu.)
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~14,000,000 images

model size: 200 MB

one pass over data = 250,000 it.

(batch size of 128 and 10 nodes)

network: 1Gb/s
Communication cost (for 1
epoch) = 9 days (with IDLE cpus)



Parallel Assynchronou SGD

Idea: Do not wait for slow workers!

Xo X,

X

—
Time taken to
compute gradients

and send them to
the PS

1
—P
1

Idle time:
wasted at
faster
workers

i

MBZ



Parallel Assynchronou SGD g

Each worker asynchronously does the following:

1. Pulls the current version x; of the model
2. Computes a mini-batch gradient g;(x;) and sends it to the PS

Each time the PS receives a gradient g; (x,)) where 7;(t) < t from a
worker it updates the model as x; 1 = Xt — 1 i (X7,(1))



Parallel Assynchronou SGD Fg ez

AT SEB /[ Benefit: Faster updates! }

Xo X X X 7.5 /

5.0 Synchronous
O
M > 0
O
O -2.5. Asynchronous
. /
“ s
-7.51

o 1 2 3 4  5xT
Time

Main Drawback: Stale updates



Reducing volume of communication

Unbiased random compressor C(x)

,

“

0,
1,

-::S:gmsz

/
What should we
<. expect from this
/. @  compressor?
-

4 Compressions are
p=0.25 used to minimize the
p=0.75 volume of

communication

FE|IC(x)] = x
Efl|C(z) — «|]*] <
C(0.75) = ¢
| |
\_/ |

4
B

J

| 4

Var[M] =

0

Assume X; €

0 [0,1] and n = 10° workers and let M = = Z" 1 C(x)).
We have x = E[M] = = Z? 1X; and
n2 Z 1V(xl) < maxpe [0,1] p(l p) < e

4




Privacy Concerns, Federated Learning and
Applications




Federated Learning

%}g}msz

Would you share your
private data on your phone
(emails, photos, ...) ?

How could we train faster
with less ammount of
communication?



Types of Federated Learning “ ez

cross-silo FL : cross-device FL

collaborative learning among several organizations : larze populationsIeAme BilYa e e




Types of Federated Learning Fg ez

homogeneous FL : heterogeneous FL

large populations of mobile devices

» data across devices come from the same
distribution

* all computing devices are the same




Applications of FL — Use Cases s waz

e Commercial applications already in production: p
e Apple: “Hey Siri”, QuickType 0
. Google: “Hey Google”, Gboard

e Next Game Changer for:

e  Smart Health Applications: Medical Research o d
and Diagnosis (doc.ai, Owkin) ¥ WeBank
*  FinTech Applications: Fraud Detection (WeBank) doc.ai
@ N &) OWKIN

Are there serioius
consequences for

*/‘f‘ ® Gboard’s wrong

L predictions? 4




Learning demand and generation profiles g uez

Irradiance profiles on clear-sky and partly cloudy days

Hydroelectric
Pc))lwer Generation Nuclear 1400 : : , r r
¢ Power Plant . -
\ ‘ 281 of May 2018
¢ /\ 1200 r 4 of Tune 2018 1
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Solar
Power Plant

Markku Jarvela, Kari Lappalainen, and Seppo Valkealahti. Characteristics of the cloud
enhancement phenomenon and pv power plants. Solar Energy, 196:137-145, 2020.

t . S

' The generation and demands
are private but crucial
| information for efficient

— Kenergygrid!

Source: http://code.eng.buffalo.edu/cloud/index.html

Electric Vehicle 3




Federated Learning Learning Algorithms

training the FL problems efficiently




Federated Averaging - FedAvg Fguez

* Repeat Until Convergence:

1. Global modelis sent to
available devices

2. Devices train local models on
local data (local epochs)

3. Devices send the updates back

Aggregation step and global
model update




Federated Averaging - FedAvg

Algorithm 1: Generalized FEDAVG (also known as FEDOPT [211])

1

Input: Initial model £(?); CLIENTOPT, SERVEROPT with learning rate 7, 7,
fort € {0,1,...,T — 1} do

2 Sample a subset S® of clients We need to tune
3 for client i € S¥) in parallel do the numt:er Of?
4 Tnitialize local model z'*% local steps! Why:
5 for k=0,...,7;, —1
6 Compute local stochastic gradient gi(m,gt’k))
7 Perform local update mgt’kﬂ) = CLIENTOPT(mEt’k),gi(m,,(;t’k)), n,t)
8 end
9 Compute local model changes Az@ = mgt’”) — a:z(.t’o)
10 end
11 Aggregate local changes A®) = Y oies® piA,Et)/ Y ics® Pi
12 Update global model z(!*1) = SERVEROPT(x(*), —A®) n,, )
13 end

arXiv:2107.06917



T client update

SCAFFOLD client 1 0 x]

" server update
1 SGD update
[ client drift

|

|

| *

W e opt.

et I client opt.

Y2 client 2

Figure 1. Client-drift in FEDAVG is illustrated for 2 clients with
3 local steps (V = 2, K = 3). The local updates y; (in blue)

move towards the individual client optima @; (orange square).
The server updates (in red) move towards % > . x; instead of to

the true optimum ax* (black square).

Sai Praneeth Karimireddy, Satyen Kale, Mehryar Mohri, Sashank J Reddi, Sebastian U Stich, and Ananda Theertha Suresh
SCAFFOLD: Stochastic controlled averaging for on-device federated learning, ICML 2020.



Algorithm 1 SCAFFOLD: Stochastic Controlled Averag-
S CA F FO I- D ing for federated learning

1: server input: initial x and ¢, and global step-size 7,

2: c;, and local step-size 7
3: foreachroundr =1,...,Rdo
. 4:  sample clients S C {1,..., N}
& xy ' local gradient 5: communicate (x, c) to all clients i € S
6: onclient : € S in parallel do
) correction 7: initialize local model y; < @
,1 /1 7 } 8: fork=1,...,K do
x| ’ : 9: compute mini-batch gradient g;(y;)
M Y1 * client update p g 9i\Yi
o O 0w 10: Yi < Yi —m(9:(yi) —ci +¢)

11: end for
Figure 2. Update steps of SCAFFOLD on a single client. The  12: c; « (i) gi(x), or (i) ¢; — c + Kim (T — y:)
local gradient (dashed black) points to @] (orange square), but 13: communicate ( Avy;, ACi) — (yi — x, c;" — Ci)
the correction term (¢ — ¢;) (in red) ensures the update moves 14: C; +— cf
towards the true optimum x* (black square). 15: end on client

16: (Axz,Ac) + ﬁ Y ics(Ay;, Ac;)

17: m(—a:—l—ngAwandcec—l—%Ac
18: end for

Sai Praneeth Karimireddy, Satyen Kale, Mehryar Mohri, Sashank J Reddi, Sebastian U Stich, and Ananda Theertha Suresh:
SCAFFOLD: Stochastic controlled averaging for on-device federated learning, ICML 2020.



Personalized Federated Learning




Do we need personalization? ¥ wez

Can we have the
same model for
both of them?

Remedy: New personalized objectives




The Global-only Approach to Federated Learning v

rcRd

min ¢ f(2) =~ 3" fi(a)
1=1

* In standard federated learning we learn a single global
model x that captures all the union of the local training

datasets at the client
* The global model might not work well for minority clients @

who have rare data
e Such clients may want to learn personalized models that

are customized to their datasets

o
K

Se
([0

W




The Local-only Approach to Federated Learning v

n
1
min _zﬁ (xl) Master
xl,xz,...,xnn =
l=

(cor )
CO
* One may take a local-only approach, where each QI
client trains a model x; in isolation, using its local
dataset D;

* The dataset at each client may be too small to learn
an accurate model, and generalization suffer

* For instance, it may be beneficial to average the
personalized models across similar clients (clustering
and training models withing a cluster)

There is a whole spectrum of approaches between the global-only
and local-only extremes

(L
.

---/



Personalized FL Objective

n n
1 1
min )i (9 i )
i=1 =1
Global-only Objective Local-only Objective

* What should be the objective function of learning personalized
models that generalize better than the local-only approach?
 Some combination of the local and global objective functions?

“5::5} MBZ



Personalized FL Objective - Clustering “ih wez

* Building on the insight that it is beneficial to coordinate with similar
clients, suppose we decide to cluster the clients that K clusters, and
learn a model x;, (k € {1,2, ..., K}) for each cluster

 How to do the clustering?

* Does the problem reduce to K separate federated learning systems?

e |dea 1: Cluster the clients based on their local data

HOW?

* Problem: Data cannot be shared across clients due to privacy
concerns (maybe we can cluster based on the public metadata,
e.g., geographic location)



LoRA: Low-Rank Adaptation
of Large Language Models

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean
Wang, Lu Wang, Weizhu Chen, ICLR 2022




LoRA

Example usage/features:

* fine-tuning with a low-rank adaptors

e optimizing over lower number of parameters
* low memory overhead for optimizers

WikiSQL

0.75
S X
5 0.70 -k
. /* N\
g * % Method
c 0.65 ¥ e Fine-Tune
% ¥ 4+  PrefixEmbed
2 0.60 4 - * PrefixLayer
§ »  Adapter(H)

0.55 T Vv LoRA

6 7 8 9 10 11

log1o # Trainable Parameters

Pretrained
Weights

W e RdXd

-':':':5:;;‘. MBZUAI




Collaborative and Efficient Personalization with Mixtures of Adaptors %z uezus

e assume the FL task but with a twist that we have n workers such that each
worker belong to 1 of data groups € {D4, D5, ..., D¢} (i.e. multi-task learning)
* GOAL: learn only a LoRA adaptors in FL way

O
D, D, 0"
® NS
05’ ‘0

-"

NN -

Y OF O§ C§ 00§ 8 R




Collaborative and Efficient Personalization with Mixtures of Adaptors %z ue:

Client k C x Adaptors
* we allow only a low-rank (adaptor) personalization o
T
—> ¢ o Vg Uce
_ K_J T —
Wi_W_I_Zi Tl,'lU]V] L=
. vl | U,
: \ —> W]f
weight S
for mixture
worker i global of low- )
weight Ll X > W 4’@" y
adaptors

for each worker:
TT; EAC RK

Collaborative and Efficient Personalization with Mixtures of Adaptors, Abdulla Jasem Almansoori, Samuel Horvath, M.T., 2024



Formulation & Algorithm g uez

min ZEkNIC ffk(u,ac)]

u,{a.}¢ |, {mwk}E (MFL-WS)
st. e A1 Vk € [K].
Algorithm 1 Simple FLoRAL Averaging
1: Let Wct (uf,a'gt)
2: forT=0,H,2H,---,[1=1] do > Comm. rounds
3: Sample clients ST ~ K
4. for all kK € S, in parallel do
5 fort=7,---, 7+ H—1do > Local epoch
i exp(fg,)
@ ﬂ-c’t o Ecczl exp(e’;t)
7: 9§t+1 = 9k ntvek fk(Zf 1 ”Z:ctwkt)
8 chct—|—1 = W A f’“(Z =1 ‘“'Icctwk )
9 end for
10:  end for -
11:  uf 4« Zkis,:e i\: T > Synchronize base layers

ZkGST c‘r—l—HN ac T+ H
Nk

12:  af g« > Synchronize adaptors

13: end for

k:
ZkES-,- c,T+H

Collaborative and Efficient Personalization with Mixtures of Adaptors, Abdulla Jasem Almansoori, Samuel Horvath, M.T., 2024



Experiments "B uez
MNIST CIFAR-10
Method * Full Reduced Full Reduced
R LS R LS R LS R LS

FedAvg 91506 25.824 | 78206 23209 | 64403 21904 | 45.603 18.7 04
Local Adaptor 86.603 845138 | 47454 32023 | 66305 68805 | 33.505 30.8 03
Ensemble X 92.001 93.805 | 66.753 86404 | 71.028 46492 | 42409 41.7 16
Ensemble vV | 95803 95.603 | 88.214 87.613 | 73702 73301 | 45009 45.10s
FLoRAL(1%) X 91.306 89.732 | 73.137 46.099 | 65.504 62838 | 45.203 44.2 09
FLoRAL(1%) v 193908 93702 | 87521 87.605 | 68902 72202 ||47.809] 44.1 06
FLoRAL(10%) X 91.810 93.109 | 75723 70.871 | 65.103 56.255 | 44504 42.102
FLoRAL(10%) V 94506 94.202 | 87.007 86.905 | 69305 72105 | 47.203 42.7 03




MeritFed: Merit-Based Federated Learning
For Diverse Datasets

...allows FL agent to find whose updates are beneficial for training ML model

Federated Learning Can Find Friends That Are Advantageous
Nazarii Tupltsa, Samuel Horvath, MT, Eduard Gorbunov, 2024

J—\‘:"&r
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Collaboration as a service it wez

» workers are available for collaboration for a fee (they do not care about training model for
their use, just to utilize their data for profit)!

TRUSTED

SERVER

= --------—’

Federated Learning Can Find Friends That Are Advantageous, arxiv 2402.05050



MeritFed

some worker
solution

our optimal
solution

How useful canbe
that worker at

2\* different x*?
X -




Mer

itFed

our testing loss!

The Bi-level optimization formV

min f(x"(w))

n
x*(w) € argmin,pa Z w; f;(x)
i=1

Algorithm 1 MeritFed: Merit-based Federated Learning for Diverse Datasets

1

0

AR A Sl

. Input: Starting point 2° € RY, stepsize v > 0

end for

end for

. fort=0,...do

server sends z' to each worker

for all workers 7 = 1,...,n in parallel do
compute stochastic gradient g;(x?, €;) from local data and send g;(z?, ;) to the server

w't! ~ argmin f

wEAT

n
gt =zt —y Y w

1=1

(

)

zt — Y i) ’wigz'(xta Ez))

1=1
\ finding the best allocation to workers

H_lg?l(a:ta gz)

use zeroth-order Mirror Descent (or its accelerated version)

Duchi et al. (2015); Shamir (2017); Gasnikov et al. (2022):

(

-

X

/.




MeritFed - Experiments S upz
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MeritFed - Experiments s ez
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