
Local SGD converges faster

for quadratic-like objectives

and requires less communication.

Motivation and Challenges
▶ Larger models need data and tasks to be
shared across many (M) devices.
▶Devices calculate local stochastic gradients
and transmit them to a central server.
▶Transmitting large amounts of data is costly.
▶Our goal: Reduce the number of
communication rounds.

We denote the concept above as "Federated
Learning"

Federated Learning process

Local SGD
▶The most popular Federated Learning
method is called Local SGD.
▶ It performs multiple local SGD steps between
communications.
▶Problem: if we reduce the number of
communications and increase the number of
local steps (H), the performance degrades.

Woodworth et al., 2020 noted the following:
For quadratic objectives, Local SGD
convergence rate is not affected by the
number of local steps, making it highly
efficient for such problems.

But what happens when we diverge
from pure quadratic setting?

Thus, our aimwas to establish better communication
complexity rates for objectives somehow close to
the quadratic form.

In order to measure the proximity of an
objective F to the quadratic form, we
decompose F into the sum: F = Q + R,
where Q is a convex quadratic function, and R
is some convex residue.
Then we introduce was quadraticity parameter
ε := LRL ≤ 1.
▶For quadratic objectives, where F is equal to
Q, the value of ε is zero
▶For quadratic-like objectives, i.e. cases where
Q is somewhat larger than R, ε is small.

Quadraticity concept allows us to
improve over the previous lower
bounds for Local SGD

Breaking existing bounds
Under the assumption of uniformly bounded
variance, when E ∥∇F (x)−∇F (x, z)∥2 ≤ σ2:
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If we denote λ = µQ + µR we can also get an
estimate for the case λ > 0:
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Abandoning restrictive assumption
If we replace uniformly bounded variance
assumption with more general one, i.e.

E ∥∇F (x)−∇F (x, z)∥2 ≤ σ2 + ρ ∥∇F (x)∥2

the acceleration given by quadraticity persists.
Case λ > 0:

E[F (xT )− F (x∗)] = O
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Variance reduction term

Represents the impact of ρ ∥∇F (x)∥2

Represents the drift caused by rare communication

In all the estimates above, the last term represents
drift that appears due to many local steps (or rare
communication, which is equivalent)
So, when it is multiplicated by the ε factor it
shows that the influence of rare communications
weakens for quadratic functions.

Notation
The following symbols and definitions are used
throughout this work:
Symbol Definition

M Number of devices
H Number of local SGD steps
T Total number of iterations on a given device
D Initial distance to the optimum, ∥x0 − x∗∥
µ Strong convexity constant
L Lipschitz gradient constant

Discussion
An important observation about quadraticity is
that for functions with a Lipschitz Hessian, ε
decreases rapidly, as illustrated in the graph
below.

Decrease of ε for LogLoss with l2 regularization
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