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Tensor decompositions: basics (1)

- We have a d-dimensional array _ , : , , ,
A(ll, "'9id) A(ll’ ""ld) — Z Ul(ll,a)Uz(lz, a)...Ud(ld, 0()
- The representation suffers from the . . ! . .
curse of dimensionality Ay, ... 1g) = 2 G(ay, ..., a) Uiy, ap)... Ugig, o)
a0y

* In many applications, we can . . . .
replace/approximate a tensor using  A(iy, ..., ;) = G{(1))...G,(iy)
the idea of separation of variables

« Main formats: canonical format,
Tucker format, tensor train
decomposition, H-Tucker format



Tensor decompositions: basics (2)

- Canonical format is not always easy , _ , . _
to compute Ay, e lg) = Z Ui, ) Us(iy, @)... Uiy, @)

a=1
« Tucker format works for small . | . .
dimensions Ay i)=Y Glay, ..o a) Uiy @y)... Uiz, o)
a0y

- TT/HT formats can be computed
using stable algorithms, vast Ay, oo iy) = Gi(1y)...G (1)
literature exists on this

Tensor-train decomposition

IV Oseledets - SIAM Journal on Scientific Computing, 2011 - SIAM

... the infimum is taken over all tensor trains with TT-ranks bounded by rk. Then, by the definition
of the infimum, there exists a sequence of tensor trains B ... All elements of the tensors B ...
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Important properties of Tensor train-decomposition

- Quasi-optimal approximation can be A(i;, .

computed via sequence of SVD

- We can recover a low-rank tensor
from elements exactly (so-called
Cross approximation)

- Efficient optimization is possible
using Riemannian optimization

vip) = Gy(ip)...Giy)



Compression of convolutional networks using tensors

 The paper by Lebedev, Rakhuba, Ganin,
Lempitsky and O. was the first paper

which proposed to use CP- S YA
decomposition to represent filters in Vey.n= Y Y ZK(; —x+68,j—y+86,50UG,js)
CNN i=x—0 j=y—0 s=1
- Such decompositions later motivated
new architectures with 1x1 and depth- s

K(, j.s.t) = ) K*(i—x +8,)K’(j — y + 8, NK*(s, NK'(t,7)

wise separable convolutions "

* Approximate, the fine-

- Several successful Huawei projects for
CNN compression

Speeding-up convolutional neural networks using fine-tuned cp-decomposition
V Lebedeyv, Y Ganin, M Rakhuba, | Oseledets... - arXiv preprint arXiv ..., 2014 - arxiv.org

... speeding up convolution layers within large convolutional neural networks based on tensor
... decomposition of the 4D convolution kernel tensor into a sum of a small number of rank-one ...
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Compression of fully-connected layers using tensors: idea

- Fully connected layers, say 1024 X 1024 1024 =2X2X ... X2
- How we can apply tensors to it? AL J) = Ay, osigs Jis o) = AU T B0 o -5 0000)
- Key idea: tensorization The permutation of indices is important

* By using virtual dimensions, we can significantly
reduce the number of parameters

- Inference speed is an issue, one approach is to
develop specialized hardware

Tensorizing neural networks

A Novikov, D Podoprikhin, A Osokin... - Advances in neural ..., 2015 - proceedings.neurips.cc

... We will refer to a neural network with one or ... neural network with 1024 hidden units and
replace both fully-connected layers by the TT-layers. By setting all the TT-ranks in the network to ...
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Tensorized fully-connected layers

* We can not compress the pretrained models
« We need to retrain the model from scratch

- It is equivalent to the representation of a given

layer in the form of d linear layers, where
d=1logN

Tensorizing neural networks

A Novikov, D Podoprikhin, A Osokin... - Advances in neural ..., 2015 - proceedings.neurips.cc

... We will refer to a neural network with one or ... neural network with 1024 hidden units and
replace both fully-connected layers by the TT-layers. By setting all the TT-ranks in the network to ...
¢ Save Y9 Cite Cited by 881 Related articles All 14 versions $%9




How can we optimize with low-rank tensor constraints

- Straight-forward option: implement the forward
pass, use autograd. Works, but not optimally

- Use ADMM-methods (later)

» Use specialized Riemannian optimization



Example: ADMM

min Z(WW 0 WEeS,
%Y W), gw) = .
+00 otherwise. Wit
s.t. WeS,
Zt+1
L,(W, Z,U) =LW) + g(Z) L

P 2 P
+ 5 W —Z+ Ul + S Ul

Towards efficient tensor decomposition-based dnn model compression with
optimization framework
M Yin, Y Sui, S Liao, B Yuan - Proceedings of the IEEE/CVF ..., 2021 - openaccess.thecvf.com

... tensor decomposition, such as tensor train (TT) and tensor ... Direction Method of Multipliers

(ADMM). By formulating TT ... with constraints on tensor ranks, we leverage ADMM technique to ...
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argmin L, (W, zt,ut) ,

w

argmin L, (WHl, Z,Ut) :
Z

1 1
ut +witt -zttt



Example: ADMM

Z-sﬁbproblem. To solve Z-subproblem (12), we first
explicitly formulate it as follows:

wn o(2)+ 5 W2 U,

where the indicator function g(-) of the non-convex set S
is non-differentiable. Then, according to [!], in this format
updating Z can be performed as:

Zt+1 — HS(Wt+1 _I_ut), (18)

W-subproble;n. The W-subproblem (11) can be refor-
mulated as follows:

. 1% 2
min  LW) + 5 [W - 2"+ U, (14)

where the first term is the loss function, e.g. cross-entropy
loss in classification tasks, of the DNN model, and the sec-
ond term is the Lo regularization. This subproblem can be
directly solved by SGD since both these two terms are dif-
ferentiable. Correspondingly, the partial derivative of (14)
with respect to W is calculated as

oL,(W, Z2-,U) _oL(W)
ow ow
And hence WV can be updated by
oL,(W, Z-,U")
ow ’

+p(W - Z'+ut). (15

(16)

Wt+1 _ Wt —n

Towards efficient tensor decomposition-based dnn model compression with

optimization framework

M Yin, Y Sui, S Liao, B Yuan - Proceedings of the IEEE/CVF ..., 2021 - openaccess.thecvf.com

... tensor decomposition, such as tensor train (TT) and tensor ... Direction Method of Multipliers
(ADMM). By formulating TT ... with constraints on tensor ranks, we leverage ADMM technique to ...
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Better scaling laws with structured layers

The most interesting case now are transformer-based models

The parameters are located in the linear layers

What if we parametrize those layers by fewer number of parameters?
We will get another scaling laws: loss vs number of parameters.

This has been studied recently!

Compute Better Spent: Replacing Dense Layers with Structured Matrices
S Qiu, A Potapczynski, M Finzi, M Goldblum, AG Wilson
arXiv preprint arXiv:2406.06248, 2024 - arxiv.org

[PDF] arxiv.org



Better scaling laws with structured layers

Dense
BTTr=1
BTTr=2
Monarch b=4
Monarch b=16

Val Error [%]

FLOPs

Figure 8. ViTs trained on ImageNet with structured layers are
more compute-efficient. We use ViTs with patch size 32 trained
for 300 epochs. BTT reaches the same performance of a dense
ViT-S/32 with up to 3.8 x fewer FLOPs.
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Figure 9. GPT-2 with all BTT layers is more compute-efficient.
(a) When including language modeling head compute, BTT is
more efficient than dense. (b) When excluding language modeling
head compute, BTT and dense perform similarly.

Compute Better Spent: Replacing Dense Layers with Structured Matrices [PDF] arxiv.org

S Qiu, A Potapczynski, M Finzi, M Goldblum, AG Wilson
arXiv preprint arXiv:2406.06248, 2024 - arxiv.org




Block Tensor Train: class of structured matrices

Structure MVM FLOPs | #Params | Modeling assumptions Example applications

Dense d? d? General linear maps MLPs, Transformers

Low-Rank 2rd 2rd Compression Bottleneck layers, Linear attention
Convolution pd D Translation equivariance Images, Time-series

Kronecker 2d3/2 2d Sets, Graphs, Grids GPs, Deep Sets, Attention, GNNs
Monarch 2d% /b 2d%/b | Flexible Compute-efficient linear layers

TT 2rd3/? 2rd Subsystems, Local interactions | Hidden Markov Models, Spin systems
BTT 2rd3/? 2rd3/2 | Flexible Compute-efficient linear layers

Table 1. Overview of the computational properties, modeling assumptions, and applications of structured matrices we consider.
Some structures require the same FLOPs as parameters for a matrix multiply, while others require more FLOPs. d is the size of the matrix,

r is the rank in low-rank, TT, and BTT, p is the kernel size in a convolution, and b is the number of blocks in Monarch. We assume 2 cores
each of size v/d for Kronecekr, TT and BTT.

Compute Better Spent: Replacing Dense Layers with Structured Matrices

S Qiu, A Potapczynski, M Finzi, M Goldblum, AG Wilson

arXiv preprint arXiv:2406.06248, 2024

arxiv.org

[PDF] arxiv.org



Block Tensor Train: class of structured matrices

Block Tensor-Train. We propose a novel family of struc-
tured matrices called Block Tensor-Train (BTT) matrices,
by removing the parameter-sharing along the block dimen-
sions (3, in the TT structure. In the two core (c = 2) case,

a BTT matrix of BT T-rank r is defined by two parameter
tensors R € RT*VdxVdxvd gpq I, ¢ RVAXVaxvdxr g

MVM is given by

Tensor-Train.  The Tensor-Train (TT) decomposition
(Oseledets, 2011) specifies a set of c cores GO ¢
Rrixmixnixri-1 for 4 = 1,...,c where d = [[,m; =
II,;ni, m € Nand ry = r. = 1. For ease of notation, we
will focusonc = 2withm; = mg =ny = ng = \/E, ry =
r, G = R € RV&VE GB) = I ¢ RVIxVaxr

2

though we present the general case in Appendix C. With
the input and output as reshaped as v/d x v/d matrices, a
TT matrix is equivalent to a sum over r Kronecker products
indexedbyo =1,...,7:

YaB = L Rs~6T~s.

aﬂ %‘: OKIB’YO' 25: 0',3’)’ Y (2) Yap = Z La’ya ZRaﬁfo'y&- (1)
Yo 0

Compute Better Spent: Replacing Dense Layers with Structured Matrices [PDF] arxiv.org

S Qiu, A Potapczynski, M Finzi, M Goldblum, AG Wilson
arXiv preprint arXiv:2406.06248, 2024 - arxiv.org




Compression of embedding layers using tensor decomposition

- One of the recent promising directions
is to compress embedding layers

- Embedding layer has the size
Ny X Ny we tensorize the ‘id’

dimension into a product of smaller
numbers

- Recent work: reorder items for
efficient compression, need
specialized losses.

TensorGPT: Efficient Compression of the Embedding Layer in LLMs based on
the Tensor-Train Decomposition

M Xu, YL Xu, DP Mandic - arXiv preprint arXiv:2307.00526, 2023 - arxiv.org

... Benefiting from the super-compression properties of Tensor Networks (TNs), we tensorize

and decompose each token embedding, and then construct a highly efficient format of ...

Y% Save 99 Cite Cited by 1 All 2 versions 9

A tensorized transformer for language modeling
X Ma, P Zhang, S Zhang, N Duan... - Advances in neural ..., 2019 - proceedings.neurips.cc

... Tensorized embedding (TE) [18] uses the tensor-train [25] to compress the embedding
layers in Transformer-XL [7], but has not compressed the attention layer. Recently, Block-Term ...

¥¢ Save Y9 Cite Cited by 127 Related articles All 12 versions 99

ipoF] Tensorized embedding layers for efficient model compression
V Khrulkov, O Hrinchuk, L Mirvakhabova... - arXiv preprint arXiv ..., 2019 - researchgate.net
... embedding layers, we can greatly compress the entire model by compressing these layers,

... Our goal is to replace the standard embedding layer specified by an embedding matrix with ...
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Compression of embedding layers using tensor decomposition

« Option 1: Train embedding layers from
scratch

 Option 2: Compress a pretrained
embedding layer, for example, for
FacelD



Post-compression of embedding layers

. We are given a large matrix of size N;; X Ny

 The ordering of indices does not matter!
- We look for a TT-matrix such that 7T ~ PA, where P is a permutation matrix
 The naive choice of the loss is the Wasserstein loss.

* More interesting is to have a hierarchical clusterization



Post-compression of embedding layers

YGRNXD N=N1'N2"'Nk

Ni Npeeoo Ny

Reshape TT

Figure 1: Diagram of the TT point cloud in Penrose graphical notation. Each tensor is depicted as a
vertex, and each vertex has as many edges as the dimensionality of the corresponding tensor. Two
tensors are connected with a common edge if these two tensors are contracted along the corresponding
dimension.
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Figure 2: Three toy point clouds (blue points) consisting of 8192 vectors each, and its compressed
TT-point cloud approximation (orange points).

@ NIRI



Tensor-based models for machine learning: key idea

- Can we build tensor representations into the

ML pipelines?

* Yes, we can but not without difficulties

* First proposed in Exponential Machines paper

- Pioneering generalization by N. Cohen

» Our followup on connection between recurrent
neural networks and tensor train decomposition

N Cohen, O Sharir, A Shashua - Conference on learning ..., 2016 - proceedings.mir.press

It has long been conjectured that hypotheses spaces suitable for data that is compositional

in nature, such as text or images, may be more efficiently represented with deep hierarchical ...

Y¢ Save Y9 Cite Cited by 517 Related articles All 12 versions 99

Exponential machines

x = (xg,...,Xxy), i.e. patches
Rank-1 feature map:

) =/fi(x) @ ... @ f4(xy)
Linear model in this space:
I(x) = (W, D)

Put low-rank constraints on W!

Expressive power of recurrent neural networks

V Khrulkov, A Novikov, | Oseledets - arXiv preprint arXiv:1711.00811, 2017 - arxiv.org

... shallow network) for a class of recurrent neural networks — ones that correspond to the Tensor
... compare expressive powers of the HT- and TT-Networks. We also implement the recurrent ...
Y% Save 99 Cite Cited by 109 Related articles All 5 versions 99

A Novikov, M Trofimov, | Oseledets - arXiv preprint arXiv:1605.03795, 2016 - arxiv.org

... the performance of machine learning solutions in many ... Exponential Machines (ExM), a
predictor that models all interactions of every order. The key idea is to represent an exponentially ...
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Tensor-train density estimation

* One example: density estimation (5, 4,) = J (p(x) = gp0)) d = J 0o 2dx — 2, Ggx) + const
with tensors

. 0.8 \ TTDE (ours)
» One can use simple losses, e

because integration is easy

GLOW

o
IS

« Works fast for tabular data
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w
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Figure 4: Dependence of the sliced total variation w.r.t.
the training time for models trained on 6-dimensional UCI
POWER dataset.

Tensor-train density estimation

GS Novikov, ME Panov... - Uncertainty in artificial ..., 2021 - proceedings.mlr.press

... nonparametric density estimation: tensor-train density estimation (TTDE). The idea is to
construct a tensor-train approximation to the coefficients’ matrix for the expansion of the density ...
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Tensor-based optimization: Quantum-inspired algorithms

Recent results focus on connecting tensor approximation with optimization

The idea is very simple: approximate the function by sampling with a tensor
decomposition, hopefully get the maximum element

PROTES: Probabilistic optimization with tensor sampling.

ldea: Sample candidates from the probability distribution



Our approach: PROTES

Probabilistic Optimization with TEnsor Sampling

Probability tensor d

X
r R

- -

TT-representation of the tensor

R R R R R R
@ @ @7"-4@ @ CQP
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Multi-index 21
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Our approach: PROTES
Probabilistic Optimization with TEnsor Sampling

Table 1: Minimization result for all selected benchmarks (P-01 — P-20). We report the values obtained by the proposed
method PROTES and by all considered baselines (BS1 — BS7). For each benchmark, the best result is highlighted in bold.
The last row presents the number of best results for each baseline.

Comparison with Nevergrad
OUR BS-1 BS-2 BS-3 BS-4 BS-5 BS-6 BS-7

(Meta) and other approaches P-01 | 9.1E+00 | 9.1E+00 | 9.1E+00 | 9.1E+00 | 9.1E+00 | 2.05+01 | 9.1E+00 | 9.1E+00
P-02 | L7E+00 | L7E+00 | 1.7E+00 | 2.7E+00 | 1.7E+00 | 5.4E+00 | 2.4E+00 | 1.9E+00

P-03 -9.8e-01 | -9.8e-01 | -9.8e-01 | -9.8¢-01 | -9.8e-01 | -6.88-01 | -9.8e-01 | -9.8E-01
P-04 4.5E+00 4.5+00 4.5+00 | 4.5E+00 | 4.5E+00 7.4+01 4.5E+00 4.5E+00
ANALYTIC P-05 5.4+00 | -5.4E+00 | -5.4+00 | -3.98+00 | -5.0E+00 | -1.98+00 | -1.6E+00 | -5.3E+00
FUNCTIONS P-06 1.6E-01 1.6E-01 1.6E-01 1.6E-01 1.6E-01 1.9-01 4.4g-01 1.6E-01
P-07 2.3e+07 2.3+07 2.3E+07 4.86+07 2.9e+07 9.6E+09 1.4+11 2.3E+07
P-08 2.7E+01 2.7E+01 2.7E+01 6.7E+01 2.7E+01 8.3E+01 1.0E+02 2.7E+01
P-09 1.2E+00 1.2E+00 1.2E+00 1.4+00 1.2E+00 2.5e+00 1.7e+00 1.2E+00
P-10 4.4E+02 4.4E+02 4.4E+02 8.3E+02 7.6E+02 1.7E+03 2.8E+03 4.4E+02
P-11 | -3.6E+02 | -3.5e+02 | -3.4+02 | -3.2E+02 | -3.4E+02 | -3.2E+02 0.0E+00 | -3.6E+02

PROTES: Probabilistic Optimization with Tensor Sampling QUBO P-12 | -5.9+03 | -5.9e+03 | -5.9E+03 | -5.2E+03 | -5.7E+03 | -5.4E+03 | -5.9E+03 | -5.9E+03
..., A Chertkov, G Ryzhakov, | Oseledets - arXiv preprint arXiv ..., 2023 - arxiv.org P-13 -3.8E+00 -3.7E+00 -3.4e+00 -2.8E+00 1.1E+01 7.4E+02 -1.2E+00 -3.8e+00
We develop new method PROTES for optimization of the multidimensional arrays and P-14 -3.1E+03 -2.9+4+03 -2.2E+4+03 -2.5e+03 -2.95+03 -2.6e+03 -2.9e+03 -3.0E+03
discretized multivariable functions, which is based on a probabilistic sampling from a probability ... P-15 6.8E-03 8 4E-03 5 56-01 1.4E-02 9.96-03 1.78-02 1.7E-01 7.96-03

¥ Save 9 Cite Citedby 1 Al2versions 55 CONTROL P-16 | 1.4E-02 | 3.08-02 | 2.3E-01 | 4.38-02 | 1.78-02 | 4.98-02 | 2.58-01 | 1.58-02

P-17 3.0E-02 3.4g-01 2.1E+00 5.0E-02 3.2E-02 1.1E-01 1.4+00 3.6E-02

P-18 1.3E-02 1.5e-02 FAIL 4.8E-02 9.1E-02 FAIL 2.5e-01 5.6E-02
fCOONNTSRT% P-19 | 1.7E-02 | 1.6E+00 FAIL FAIL FAIL FAIL FAIL FAIL
P-20 4.7E-02 FAIL FAIL FAIL FAIL FAIL FAIL FAIL
WINS 20 11 11 4 7 0 4 11
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Kashin decomposition (UAI 2024 paper)

Fundamental result by Boris Kashin:
Every vector x € R can be represented as

x = u+ Qv where Q is a (random) orthogonal
matrix and

||u||oos% ||v||oo_\/_

Bounded infinity norm = good quantization!



Kashin decomposition algorithm

Algorithm 1: Kashin Decomposition Algorithm
Input: Vector x € R", Orthogonal matrix ), Tolerance € > 0
Output: Vectors u, v € R" such that z ~ u + v = u + Quv, and both v and v

have small infinity norms.
A

-
Define projection 7,(y) := % -y g
Yli2 '
Initialize u < 0", 0 < 0" ! . .
while ||z — u — 8|| > ¢ do : & = sign(z)
if |l] > Q| then oo,
T < Wx(SIgn(CL')) l' /I \\\ ",
U u+T | 0 \T
else ' K
7 < m,(QSign(QTx)) o
V047 oo
end : " '/'
T —T ,',",'
end ! .
0

return x,u, v




Kashin decomposition algorithm: how the elements look like

U...
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Figure 1: We solve the post-training quantization problem, i.e., replacing the original weights of an LLM with a low-bit representation. We split the matrix into two factors with
Kashin decomposition algorithm, whose values are replaced with the closest centroids, so X7 = U? + V9. The number of centroids determines the compression level (4-bit).



Kashin decomposition algorithm: results

QUANTIZATION COLA SST-2 QQP QNLI MNLI RTE STS-B MRPC  WNLI

roberta-base

FP32 59.06 93.8 91.24/88.36 92.62 88.1/87.43 67.87 89.65/89.49 87.75/91.2 56.34
UNIFORM 4BIT 0.0 49.08 36.82/53.82 49.46 31.82/31.82 52.71 10.08/9.37 68.38/81.22 56.34
KMEANS 4BIT 46.97 92.77 88.77/87.39 89.27 83.98/82.85 55.23 79.65/80.47 71.32/75.77 56.34
KASHIN 4BIT (OURS) 52.09 90.37 89.53/86.73 91.14 86.41/85.51 60.28 87.29/87.26 83.08/87.10 56.34
bert-base
FP32 59.31 91.74 90.66/87.39 90.74 83.96/84.24 64.98 88.94/88.77 84.31/88.81 42.25
UNIFORM 4BIT 1.24 49.66 38.09/52.75 49.22 32.24/33.34 50.18 -0.21/-0.25 63.97/76.02 49.3
KMEANS 4BIT 54.43 91.51 88.87/85.33 88.01 78.63/78.76 55.23 85.06/85.0 34.55/8.87 54.92

KASHIN 4BIT (OURS) 59.65 91.63 90.28/87.33 90.06 83.88/84.01 63.53 88.76/88.56 84.80/89.31 42.25

Table 2: Results of GLUE benchmark for Bert and RoBerta models, where we quan-
tized linear layers in transformer blocks with three quantization methods: uniform,
kmeans, and Kashin quantization.
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