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AIRI: leading AI Institute in Russia

• 240 employees
• Top-1 on A*/A publications in Russia
• 21 teams on all direction on AI (both fundamental and applied)
• Big projects: AGI for Medicine; AI for Drug Design (AIDD); FusionBrain (Multimodal AI); 

Quantum
• Research directions: New Materials, Efficient Algorithms, Generative AI, Self-Supervised 

learning, …. https://airi.net/
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Tensor decompositions: basics (1)

• We have a d-dimensional array 

• The representation suffers from the 
curse of dimensionality

• In many applications, we can 
replace/approximate a tensor using 
the idea of separation of variables

• Main formats: canonical format, 
Tucker format, tensor train 
decomposition, H-Tucker format

A(i1, …, id) A(i1, …, id) =
r

∑
α=1

U1(i1, α)U2(i2, α)…Ud(id, α)

A(i1, …, id) = ∑
α1,…,αd

G(α1, …, αd)U1(i1, α1)…Ud(id, αd)

A(i1, …, id) = G1(i1)…Gd(id)
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Tensor decompositions: basics (2)

• Canonical format is not always easy 
to compute

• Tucker format works for small 
dimensions

• TT/HT formats can be computed 
using stable algorithms, vast 
literature exists on this

A(i1, …, id) =
r

∑
α=1

U1(i1, α)U2(i2, α)…Ud(id, α)

A(i1, …, id) = ∑
α1,…,αd

G(α1, …, αd)U1(i1, α1)…Ud(id, αd)

A(i1, …, id) = G1(i1)…Gd(id)
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Important properties of Tensor train-decomposition

• Quasi-optimal approximation can be 
computed via sequence of SVD

• We can recover a low-rank tensor 
from elements exactly (so-called 
cross approximation)

• Efficient optimization is possible 
using Riemannian optimization

A(i1, …, id) = G1(i1)…Gd(id)



C
on

fid
en

tia
l. 

AI
R

I. 
20

22

Compression of convolutional networks using tensors
• The paper by Lebedev, Rakhuba, Ganin, 

Lempitsky and O. was the first paper 
which proposed to use CP-
decomposition to represent filters in 
CNN

• Such decompositions later motivated 
new architectures with 1x1 and depth-
wise separable convolutions

• Approximate, the fine-
• Several successful Huawei projects for 

CNN compression

V(x, y, t) =
x+δ

∑
i=x−δ

y+δ

∑
j=y−δ

S

∑
s=1

K(i − x + δ, j − y + δ, s, t)U(i, j, s)

K(i, j, s, t) =
R

∑
r=1

Kx(i − x + δ, r)Ky( j − y + δ, r)Ks(s, r)Kt(t, r)
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Compression of fully-connected layers using tensors: idea

• Fully connected layers, say 
• How we can apply tensors to it?
• Key idea: tensorization
• By using virtual dimensions, we can significantly 

reduce the number of parameters
• Inference speed is an issue, one approach is to 

develop specialized hardware

1024 × 1024

The permutation of indices is important

1024 = 2 × 2 × … × 2
A(i, j) → A(i1, …, id; j1, …jd) → A(i1, j1; i2 j2; …; id jd)
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Tensorized fully-connected layers

• We can not compress the pretrained models
• We need to retrain the model from scratch
• It is equivalent to the representation of a given 

layer in the form of d linear layers, where 
d = log N
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How can we optimize with low-rank tensor constraints

• Straight-forward option: implement the forward 
pass, use autograd. Works, but not optimally

• Use ADMM-methods (later)
• Use specialized Riemannian optimization 
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Example: ADMM
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Example: ADMM
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Better scaling laws with structured layers

The most interesting case now are transformer-based models 

The parameters are located in the linear layers

What if we parametrize those layers by fewer number of parameters?

We will get another scaling laws:  loss vs number of parameters.

This has been studied recently!
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Better scaling laws with structured layers
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Block Tensor Train: class of structured matrices
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Block Tensor Train: class of structured matrices
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Compression of embedding layers using tensor decomposition

• One of the recent promising directions 
is to compress embedding layers

• Embedding layer has the size 
, we tensorize the ‘id’ 

dimension into a product of smaller 
numbers

• Recent work: reorder items for 
efficient compression, need 
specialized losses.

Nvoc × Nf
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Compression of embedding layers using tensor decomposition

• Option 1: Train embedding layers from 
scratch

• Option 2: Compress a pretrained 
embedding layer, for example, for 
FaceID
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Post-compression of embedding layers

• We are given a large matrix of size 

• The ordering of indices does not matter!

• We look for a TT-matrix such that , where P is a permutation matrix
• The naive choice of the loss is the Wasserstein loss.
• More interesting is to have a hierarchical clusterization

Nid × Nf

TT ≈ PA
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Post-compression of embedding layers
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Tensor-based models for machine learning: key idea

• Can we build tensor representations into the 
ML pipelines?

• Yes, we can but not without difficulties
• First proposed in Exponential Machines paper
• Pioneering generalization by N. Cohen
• Our followup on connection between recurrent 

neural networks and tensor train decomposition

, i.e. patches

Rank-1 feature map:

Linear model in this space:

Put low-rank constraints on W!

x = (x1, …, xd)

Ψ(x) = f1(x1) ⊗ … ⊗ fd(xd)

l(x) = ⟨W, Φ⟩
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Tensor-train density estimation

• One example: density estimation 
with tensors

• One can use simple losses, 
because integration is easy

• Works fast for tabular data

ℒ (p, qθ) = ∫ (p(x) − qθ(x))2 d = ∫ qθ(x)2dx − 2𝔼x∼p(x)qθ(x) +  const 
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Tensor-based optimization: Quantum-inspired algorithms

Recent results focus on connecting tensor approximation with optimization
The idea is very simple: approximate the function by sampling with a tensor 
decomposition, hopefully get the maximum element 
 
 
PROTES: Probabilistic optimization with tensor sampling. 
 
Idea: Sample candidates from the probability distribution



C
on

fid
en

tia
l. 

AI
R

I. 
20

22

Our approach: PROTES
Probabilistic Optimization with TEnsor Sampling



C
on

fid
en

tia
l. 

AI
R

I. 
20

22

Our approach: PROTES
Probabilistic Optimization with TEnsor Sampling

Comparison with Nevergrad 
(Meta) and other approaches
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Kashin decomposition (UAI 2024 paper)

Fundamental result by Boris Kashin:

Every vector  can be represented as 

 where  is a (random) orthogonal 
matrix and 

Bounded infinity norm = good quantization!

x ∈ ℝd

x = u + Qv Q

∥u∥∞ ≤
c

N
, ∥v∥∞ ≤

c

N



C
on

fid
en

tia
l. 

AI
R

I. 
20

22

Kashin decomposition algorithm
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Kashin decomposition algorithm: how the elements look like
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Kashin decomposition algorithm: results



AIRI Institute

airi_research_institute

AIRI_inst

artificial-intelligence-research-institute

Artificial Intelligence  
Research Institute
airi.net

AIRI Institute

https://www.youtube.com/c/AIRIInstitute
https://t.me/airi_research_institute
https://t.me/airi_research_institute
https://t.me/airi_research_institute
https://t.me/airi_research_institute
https://t.me/airi_research_institute
https://twitter.com/AIRI_inst
https://ru.linkedin.com/company/artificial-intelligence-research-institute
https://vk.com/airi_institute

