
Matrix and tensor methods for efficient compression and inference in
deep neural networks

Ivan Oseledets
CEO, AIRI; Professor and Lab Head @Skoltech

C
on

fid
en

tia
l.

AI
R

I.
20

22

AIRI: leading AI Institute in Russia

• 240 employees
• Top-1 on A*/A publications in Russia
• 21 teams on all direction on AI (both fundamental and applied)
• Big projects: AGI for Medicine; AI for Drug Design (AIDD); FusionBrain (Multimodal AI);

Quantum
• Research directions: New Materials, Efficient Algorithms, Generative AI, Self-Supervised

learning, …. https://airi.net/

C
on

fid
en

tia
l.

AI
R

I.
20

22

Tensor decompositions: basics (1)

• We have a d-dimensional array

• The representation suffers from the
curse of dimensionality

• In many applications, we can
replace/approximate a tensor using
the idea of separation of variables

• Main formats: canonical format,
Tucker format, tensor train
decomposition, H-Tucker format

A(i1, …, id) A(i1, …, id) =
r

∑
α=1

U1(i1, α)U2(i2, α)…Ud(id, α)

A(i1, …, id) = ∑
α1,…,αd

G(α1, …, αd)U1(i1, α1)…Ud(id, αd)

A(i1, …, id) = G1(i1)…Gd(id)

C
on

fid
en

tia
l.

AI
R

I.
20

22

Tensor decompositions: basics (2)

• Canonical format is not always easy
to compute

• Tucker format works for small
dimensions

• TT/HT formats can be computed
using stable algorithms, vast
literature exists on this

A(i1, …, id) =
r

∑
α=1

U1(i1, α)U2(i2, α)…Ud(id, α)

A(i1, …, id) = ∑
α1,…,αd

G(α1, …, αd)U1(i1, α1)…Ud(id, αd)

A(i1, …, id) = G1(i1)…Gd(id)

C
on

fid
en

tia
l.

AI
R

I.
20

22

Important properties of Tensor train-decomposition

• Quasi-optimal approximation can be
computed via sequence of SVD

• We can recover a low-rank tensor
from elements exactly (so-called
cross approximation)

• Efficient optimization is possible
using Riemannian optimization

A(i1, …, id) = G1(i1)…Gd(id)

C
on

fid
en

tia
l.

AI
R

I.
20

22

Compression of convolutional networks using tensors
• The paper by Lebedev, Rakhuba, Ganin,

Lempitsky and O. was the first paper
which proposed to use CP-
decomposition to represent filters in
CNN

• Such decompositions later motivated
new architectures with 1x1 and depth-
wise separable convolutions

• Approximate, the fine-
• Several successful Huawei projects for

CNN compression

V(x, y, t) =
x+δ

∑
i=x−δ

y+δ

∑
j=y−δ

S

∑
s=1

K(i − x + δ, j − y + δ, s, t)U(i, j, s)

K(i, j, s, t) =
R

∑
r=1

Kx(i − x + δ, r)Ky(j − y + δ, r)Ks(s, r)Kt(t, r)

C
on

fid
en

tia
l.

AI
R

I.
20

22

Compression of fully-connected layers using tensors: idea

• Fully connected layers, say
• How we can apply tensors to it?
• Key idea: tensorization
• By using virtual dimensions, we can significantly

reduce the number of parameters
• Inference speed is an issue, one approach is to

develop specialized hardware

1024 × 1024

The permutation of indices is important

1024 = 2 × 2 × … × 2
A(i, j) → A(i1, …, id; j1, …jd) → A(i1, j1; i2 j2; …; id jd)

C
on

fid
en

tia
l.

AI
R

I.
20

22

Tensorized fully-connected layers

• We can not compress the pretrained models
• We need to retrain the model from scratch
• It is equivalent to the representation of a given

layer in the form of d linear layers, where
d = log N

C
on

fid
en

tia
l.

AI
R

I.
20

22

How can we optimize with low-rank tensor constraints

• Straight-forward option: implement the forward
pass, use autograd. Works, but not optimally

• Use ADMM-methods (later)
• Use specialized Riemannian optimization

C
on

fid
en

tia
l.

AI
R

I.
20

22

Example: ADMM

C
on

fid
en

tia
l.

AI
R

I.
20

22

Example: ADMM

C
on

fid
en

tia
l.

AI
R

I.
20

22

Better scaling laws with structured layers

The most interesting case now are transformer-based models

The parameters are located in the linear layers

What if we parametrize those layers by fewer number of parameters?

We will get another scaling laws: loss vs number of parameters.

This has been studied recently!

C
on

fid
en

tia
l.

AI
R

I.
20

22

Better scaling laws with structured layers

C
on

fid
en

tia
l.

AI
R

I.
20

22

Block Tensor Train: class of structured matrices

C
on

fid
en

tia
l.

AI
R

I.
20

22

Block Tensor Train: class of structured matrices

C
on

fid
en

tia
l.

AI
R

I.
20

22

Compression of embedding layers using tensor decomposition

• One of the recent promising directions
is to compress embedding layers

• Embedding layer has the size
, we tensorize the ‘id’

dimension into a product of smaller
numbers

• Recent work: reorder items for
efficient compression, need
specialized losses.

Nvoc × Nf

C
on

fid
en

tia
l.

AI
R

I.
20

22

Compression of embedding layers using tensor decomposition

• Option 1: Train embedding layers from
scratch

• Option 2: Compress a pretrained
embedding layer, for example, for
FaceID

C
on

fid
en

tia
l.

AI
R

I.
20

22

Post-compression of embedding layers

• We are given a large matrix of size

• The ordering of indices does not matter!

• We look for a TT-matrix such that , where P is a permutation matrix
• The naive choice of the loss is the Wasserstein loss.
• More interesting is to have a hierarchical clusterization

Nid × Nf

TT ≈ PA

C
on

fid
en

tia
l.

AI
R

I.
20

22

Post-compression of embedding layers

C
on

fid
en

tia
l.

AI
R

I.
20

22

Tensor-based models for machine learning: key idea

• Can we build tensor representations into the
ML pipelines?

• Yes, we can but not without difficulties
• First proposed in Exponential Machines paper
• Pioneering generalization by N. Cohen
• Our followup on connection between recurrent

neural networks and tensor train decomposition

, i.e. patches

Rank-1 feature map:

Linear model in this space:

Put low-rank constraints on W!

x = (x1, …, xd)

Ψ(x) = f1(x1) ⊗ … ⊗ fd(xd)

l(x) = ⟨W, Φ⟩

C
on

fid
en

tia
l.

AI
R

I.
20

22

Tensor-train density estimation

• One example: density estimation
with tensors

• One can use simple losses,
because integration is easy

• Works fast for tabular data

ℒ (p, qθ) = ∫ (p(x) − qθ(x))2 d = ∫ qθ(x)2dx − 2𝔼x∼p(x)qθ(x) + const

C
on

fid
en

tia
l.

AI
R

I.
20

22

Tensor-based optimization: Quantum-inspired algorithms

Recent results focus on connecting tensor approximation with optimization
The idea is very simple: approximate the function by sampling with a tensor
decomposition, hopefully get the maximum element 
 
 
PROTES: Probabilistic optimization with tensor sampling. 
 
Idea: Sample candidates from the probability distribution

C
on

fid
en

tia
l.

AI
R

I.
20

22

Our approach: PROTES
Probabilistic Optimization with TEnsor Sampling

C
on

fid
en

tia
l.

AI
R

I.
20

22

Our approach: PROTES
Probabilistic Optimization with TEnsor Sampling

Comparison with Nevergrad
(Meta) and other approaches

C
on

fid
en

tia
l.

AI
R

I.
20

22

Kashin decomposition (UAI 2024 paper)

Fundamental result by Boris Kashin:

Every vector can be represented as

 where is a (random) orthogonal
matrix and

Bounded infinity norm = good quantization!

x ∈ ℝd

x = u + Qv Q

∥u∥∞ ≤
c

N
, ∥v∥∞ ≤

c

N

C
on

fid
en

tia
l.

AI
R

I.
20

22

Kashin decomposition algorithm

C
on

fid
en

tia
l.

AI
R

I.
20

22

Kashin decomposition algorithm: how the elements look like

C
on

fid
en

tia
l.

AI
R

I.
20

22

Kashin decomposition algorithm: results

AIRI Institute

airi_research_institute

AIRI_inst

artificial-intelligence-research-institute

Artificial Intelligence  
Research Institute
airi.net

AIRI Institute

https://www.youtube.com/c/AIRIInstitute
https://t.me/airi_research_institute
https://t.me/airi_research_institute
https://t.me/airi_research_institute
https://t.me/airi_research_institute
https://t.me/airi_research_institute
https://twitter.com/AIRI_inst
https://ru.linkedin.com/company/artificial-intelligence-research-institute
https://vk.com/airi_institute

