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Optimization in Deep Learning

Many people in the deep learning community believe that
optimization is not important
This is clear looking at Google DeepMind: Not a single
optimization team!

Yet, optimization is a critical component
But often optimization theory is too far from the reality of machine
learning
This talk is an attempt to bridge theory and practice and to show
some interesting aspects of algorithms used in deep learning
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A Motivating Example

Scaling laws (Kaplan et al., 2020) “As more compute becomes
available, we can choose how much to allocate towards training
larger models, using larger batches, and training for more steps.
[...] For optimally compute-efficient training, most of the increase
should go towards increased model size.”

Yet, they were wrong...
...because they did not tune properly the learning rate!!
“First, the authors use a fixed number of training tokens and
learning rate schedule for all models [...] result[ing] in
underestimating the effectiveness of training models on less data
than 130B tokens, and eventually contributes to the conclusion
that model size should increase faster than training data size as
compute budget increases.” (Hoffmann et al., 2022)

3 / 51



A Motivating Example

Scaling laws (Kaplan et al., 2020) “As more compute becomes
available, we can choose how much to allocate towards training
larger models, using larger batches, and training for more steps.
[...] For optimally compute-efficient training, most of the increase
should go towards increased model size.”
Yet, they were wrong...

...because they did not tune properly the learning rate!!
“First, the authors use a fixed number of training tokens and
learning rate schedule for all models [...] result[ing] in
underestimating the effectiveness of training models on less data
than 130B tokens, and eventually contributes to the conclusion
that model size should increase faster than training data size as
compute budget increases.” (Hoffmann et al., 2022)

3 / 51



A Motivating Example

Scaling laws (Kaplan et al., 2020) “As more compute becomes
available, we can choose how much to allocate towards training
larger models, using larger batches, and training for more steps.
[...] For optimally compute-efficient training, most of the increase
should go towards increased model size.”
Yet, they were wrong...
...because they did not tune properly the learning rate!!
“First, the authors use a fixed number of training tokens and
learning rate schedule for all models [...] result[ing] in
underestimating the effectiveness of training models on less data
than 130B tokens, and eventually contributes to the conclusion
that model size should increase faster than training data size as
compute budget increases.” (Hoffmann et al., 2022)

3 / 51



Outline

1 Why Studying Adam and AdamW?

2 Understanding Adam with Scale-Freeness

3 Understanding AdamW with Proximal Updates

4 Understanding Adam with Relaxed Smoothness

4 / 51



Why Studying Adam and AdamW?

Adam and AdamW are the most used algorithms in deep
learning
Proof #1: Adam has 177150 citations, AdamW 16395 citations
Proof #2: Most used ones even to train large language models

Zhao et al. “A Survey of Large Language Models”, ArXiv’23
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Why Adam is the Best Algorithm?

If we want to design better optimization algorithms, we have to
understand why Adam and AdamW work so well

Caveat: This task might be ill-posed.
My blogpost from December 2020: Adam might be the best
algorithm, because we only keep using neural network
architectures where Adam works!
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Adam Is Scale-Free

Suppose to scale the first coordinate of your gradients by 10
If you use gradient descent, this means that you update the first
coordinate much more than the other ones
To counteract the scaling, you should divide the learning rate of
the first coordinate by 10

But we can do better

Some optimization algorithms are adaptive to the scale of the
features: scale-free (Orabona&Pál, 2015, 2018)
The update of these algorithms is completely independent from
any multiplicative scaling of each coordinate of the gradients
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Scale-Freeness Through “Adaptive Learning Rates”

AdaGrad (Duchi et al., 2010; McMahan&Streeter, 2010)
introduced the idea of having per-coordinate learning rates
depending on past stochastic gradients gt

Learning rate at iteration t on coordinate i : 1
ϵ+

√∑t
j=1 g2

j,i

It is easy to see that if a coordinate is multiplied by a scalar, the
learning rate is divided by the same scalar (if ϵ ≈ 0)

Adam has the same behaviour:

mt = β1mt−1 + (1 − β1)gt

v t = β2v t−1 + (1 − β2)g2
t

w t = w t−1 − ηtmt/(
√

v t + ϵ)
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Scale-free Algorithms Have an Implicit Preconditioner

Theorem

Let f be a twice continuously differentiable function and x∗ such that
∇f (x∗) = 0. Then, let f̃Λ be the family of functions such that
∇f̃Λ(x∗) = 0, and ∇2 f̃Λ(x) = Λ∇2f (x), where
Λ = diag(λ1, . . . , λd ) ⪰ 0.
Then, running any scale-free optimization algorithm on f and f̃Λ will
result exactly in the same iterates.

Corollary: Any dependency on the condition number of the scale-free
algorithm will be reduced to the smallest condition number among all
the functions f̃Λ.

(Zhuang et al., TMLR’22)
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Example with Quadratics

Corollary

For quadratic problems with diagonal and positive definite Hessian,
any scale-free algorithm will not differentiate between minimizing

f (x) = 1
2 x⊤Hx + b⊤x + c

f̃ (x) = 1
2 x⊤x + (H−1b)⊤x + c.

As the condition number of f̃ is 1, the convergence of a scale-free
algorithm will not be affected by the condition number of f at all.

(Zhuang et al., TMLR’22)
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GD on a Quadratic
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GD+Preconditioning on a Quadratic
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Adam on a Quadratic
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Adam+Preconditioning on a Quadratic
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AdaGrad on a Quadratic
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AdaGrad+Preconditioning on a Quadratic
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Lion on a Quadratic
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Lion+Preconditioning on a Quadratic
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Take Home Messages I

Adam has a scale-free update
Scale-free updates have an “implicit preconditioner”
This preconditioning effect does not depend on the presence of a
“second-order term”, in fact it is present in Lion too
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Squared L2 Regularization and Adam

A commonly used regularizer is the squared L2 norm:
Obj(w) = λ∥w∥2

2 + TrainingLoss(w)

Stochastic gradient calculated of loss plus regularizer is

λw t +
1
m

m∑
i=1

∇ℓ(fw t (x i , yi))︸ ︷︷ ︸
∇t=Stochastic Gradient

SGD: w t = w t−1 − ληw t − η∇t = (1 − ηλ)w t︸ ︷︷ ︸
weight decay

−η∇t

Learning rate η and λ are now linked:
If λη > 1, the sign of w t flips and it might even grow instead of
shrinking!
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Adam vs AdamW

Adam update

gt = λw t−1 +∇t

mt = β1mt−1 + (1 − β1)gt

v t = β2v t−1 + (1 − β2)g2
t

w t = w t−1 − ηtmt/(
√

v t + ϵ)

A different heuristic: AdamW

gt = ∇t

mt = β1mt−1 + (1 − β1)gt

v t = β2v t−1 + (1 − β2)g2
t

w t = w t−1 − ηt(λw t−1 + mt/(
√

v t + ϵ))

Motivation: “decouples” η and λ

(Loshchilov&Hutter, 2019)
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Small Detour: Proximal Updates

Where the gradient descent update comes from?

w t = argmin
w

f (w t−1) + ⟨∇f (w t−1),w − w t−1⟩︸ ︷︷ ︸
Taylor approximation around w t−1

+
1
2η

∥w − w t−1∥2
2︸ ︷︷ ︸

Stay close to w t−1

= w t−1 − η∇f (w t−1)

A better update through Proximal Updates

w t = argmin
w

f (w)︸ ︷︷ ︸
Actual function

+
1
2η

∥w − w t−1∥2
2︸ ︷︷ ︸

Stay close to w t−1

No closed form in most of the cases: as difficult as minimizing f !
Yet, better theoretical and empirical performance
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An Efficient Variant: Partial Linearization

If the loss function is composed by two parts, for example
regularizer + loss, we can linearize only one part
For example, we can linearize only the loss

w t = argmin
w

λ

2
∥w∥2

2︸ ︷︷ ︸
Full regularizer

+ f (w t−1) + ⟨∇f (w t−1),w − w t⟩︸ ︷︷ ︸
Taylor approximation f around w t−1

+
1
2η

∥w − w t−1∥2
2︸ ︷︷ ︸

Stay close to w t−1

=
w t−1 − η∇f (w t−1)

1 + λη

Now η and λ are independent!
This update will never flip the sign nor grow w , for any learning
rate η ≥ 0
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AdamW is an Approximated Proximal Step!

Adam updates with a normalized momentum instead of gradient

w t = w t−1 + η
mt

ϵ+
√

v t

where the mt and v t contains the gradient of the regularizer too

The proximal version of the same update is

w t =
w t−1 + η mt

ϵ+
√

v t

1 + λη
= (1 − λη)w t−1 + η

mt

ϵ+
√

v t︸ ︷︷ ︸
AdamW update

+O(η2)

Bonus effect: Both updates above are scale-free, while Adam
with L2 regularizer is not
We can now design the “AdamW version” of any other algorithm:
just use the proximal view
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Scale-Freeness Correlates with Better Performance

Deep learning people have developed a number of tricks to have
all the weights roughly in the same ranges
Batch normalization (BN) is the most used heuristic to
accomplish it (Ioffe&Szegedy, ICML’15)
BN is so effective that makes AdamW useless (Bjorck et al.
AAAI’21)
But what happens without BN?

27 / 51



20 Layer Resnet on CIFAR10
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44 Layer Resnet on CIFAR10
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56 Layer Resnet on CIFAR10
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110 Layer Resnet on CIFAR10
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218 Layer Resnet on CIFAR10
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Take Home Messages II

Adam is not scale-free if we use a squared L2 regularizer
Fix: AdamW, an approximate proximal update, is scale-free
Any other algorithm can use a proximal update for the squared
L2 regularizer!
Scale-free updates correlates with better performance, in training
and testing
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How Do We Study Optimization Algorithm?

No optimization algorithm can be better than all the others in all
cases
So we need to restrict to a family of functions, usually we
consider smooth functions
A differentiable function F : Rd → R is M-smooth if

∥∇F (x)−∇F (y)∥2 ≤ M∥x − y∥2

In a smooth function:
The gradients go to zero approaching a minimum, even if the
function is non-convex
The functions is upper bounded by a quadratic
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(L0,L1)-Smoothness

However, smoothness is not a good characterization of the
landscapes of deep neural networks training objectives [B. Zhang et
al., ICLR’20]

Relaxed smoothness [B. Zhang et al., ICLR’20]:

∥∇2F (x)∥ ≤ L0 + L1∥∇F (x)∥, ∀x ∈ Rd

No twice differentiable variant [J. Zhang et al., NeurIPS’20]:

∥∇F (x)−∇F (y)∥2 ≤ (L0 + L1∥∇F (x)∥2)∥x − y∥2,

for all x ,y ∈ Rd : ∥x − y∥2 ≤ 1
L1

The curvature can increase far away from a local minimum
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Why Relaxed Smoothness?

Many interesting functions are non-smooth, but they are
(L0,L1)-smooth
Examples:

All univariate polynomials, like x4

exp(x)

Relaxed smoothness means that the function could grow much
faster than a quadratic, hence gradients can be very large

More importantly, Zhang et al. [ICLR’20] empirically showed that
this assumption holds for LSTMs
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Transformers Satisfy Relaxed Smoothness Too

We show that this is true even on Transformers

(a) Wikitext-2 (b) WMT’16 de-en

(Crawshaw et al., NeurIPS’22)
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SGD with Gradient Clipping under (L0,L1)-smoothness

Gradient clipping technique ensures SGD’s convergence under
(L0,L1)-smoothness [B. Zhang et al., ICLR’20]
Gradient clipping is necessary because the relaxed smoothness
can make the gradient exponentially big

But...
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Relaxed Smoothness Changes a Lot across Layers!

(a) Encoder First Layer (b) Encoder Last Layer

(c) Decoder Second Layer (d) Decoder Last Layer

WMT’16 de-en

(Crawshaw et al., NeurIPS’22) 40 / 51



A New Coordinate-wisely Relaxed Smooth Condition

Let L0 := [L0,1, . . . ,L0,d ]
T and L1 := [L1,1, . . . ,L1,d ]

T . A differentiable
function F (x) is (L0,L1)-smooth coordinate-wisely, if for any
x ,y ∈ Rd such that ∥x − y∥2 ≤ 1

∥L1∥∞
, we have∣∣∣∣∂F

∂xj
(y)− ∂F

∂xj
(x)

∣∣∣∣ ≤ (
L0,j√

d
+ L1,j

∣∣∣∣∂F
∂xj

(x)
∣∣∣∣) ∥y − x∥2, ∀j ∈ [d ]

Better model for reality
You cannot hope to show an advantage of Adam-like updates
over SGD without considering this coordinate-wise version!

(Crawshaw et al., NeurIPS’22)
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A General Adam-like Algorithm

Algorithm Generalized SignSGD
(All operations on vectors are element-wise)

1: Inputs: x1, β1, β2, η
2: m0 = 0, v0 = 0
3: for t = 1, · · · ,T do
4: Compute gt , an unbiased estimate of ∇F (x t)
5: mt = β1mt−1 + (1 − β1)gt
6: v t = β2v t−1 + (1 − β2)m2

t
7: x t+1 = x t − η mt√

v t

8: end for

Difference with Adam: v t = β2v t−1 + (1 − β2)g2
t

Still Scale-free!
If β2 = 0 we get SignSGD with momentum

(Crawshaw et al., NeurIPS’22)
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Theoretical Convergence Guarantee

Theorem

Assume F is (L0,L1)-coordinate-wise smooth and the noise on the
stochastic gradient coordinate j is bounded by σj w.p. 1.
Then, there exist settings for η, β1, β2 and T large enough such that,
Generalized SignSGD guarantees with high probability that

min
t∈[T ]

∥∇F (x t)∥1 = Õ

∥L0∥
1
4
1 ∆

1
4 ∥σ∥

1
2
1

T
1
4︸ ︷︷ ︸

Noise

+

√
∥L0∥1∆√

T︸ ︷︷ ︸
Smoothness



+ Õ

(∥M∥1 + ∥σ∥1) exp

(
−

∥L0∥3/4
1

∥L1∥∞∥σ∥1/2
1 ∆1/4

T 1/4

)
︸ ︷︷ ︸

Relaxed Smoothness + Unbounded Gradients

 ,

where Mj := sup
{∣∣∣ ∂F

∂xj
(x)

∣∣∣ : F (x) ≤ F (x1)
}
< ∞, ∆ := F (x1)− F ∗.

(Crawshaw et al., NeurIPS’22) 43 / 51



Lower Bound of GD

Theorem

Fix ϵ > 0,L0 > 0,L1 > 0,M ≥ max( L0
L1
, ϵ), and x0 ∈ R. Pick any

constant learning rate η for GD, with the knowledge of the above
constants.
Then, there exists a 1-d (L0,L1)-smooth function F , bounded from
below by F ∗, such that sup{|F ′(x)| : F (x) ≤ F (x0)} ≤ M on which the
number of iterations T of GD with learning rate η to guarantee
|F ′(xT )| < ϵ is at least

ML1(F (x0)− F ∗ − 15ϵ2

16L0
)

2ϵ2
(
ln ML1

L0
+ 1

)
While, generalized SignSGD rate is Õ( L0(F (x0)−F∗)

ϵ2 )

(Lower bound in Zhang et al. (NeurIPS’20) has an error, we fixed it)
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Experiments Setup

Competitors:
1 Adam
2 SGD Momentum: x t+1 = x t − ηmt

3 SGD Momentum Normalized: x t+1 = x t − η mt
∥mt∥2

4 SGDClipGrad: x t+1 = x t −min
(
η, γ

∥gt∥2

)
gt

5 SGDClipMomentum: x t+1 = x t −min
(
η, γ

∥mt∥2

)
mt

(The momentum term is mt = β1mt−1 + (1 − β1)gt )

(Kingma & Ba, ICLR’15; Zhang et al., NeurIPS’20; Zhang et al., NeurIPS’21)
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Resnet on CIFAR10

Train the 20-layer Residual Network model to do image
classification on the CIFAR-10 dataset

Mini-batch size is 128
No learning rate schedule
Training+testing with best hyperparameters repeated 5 times with
different random seeds
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LSTM on Penn Treebank

Train a 3-layer AWD-LSTM to do language modeling (word level)
on the Penn Treebank dataset

Mini-batch size is 40
No learning rate schedule
Training+testing with best hyperparameters repeated 5 times with
different random seeds
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Transformer on Translation Task

Train a 6-layer Transformer on WMT’16 German-English
Translation Task

Mini-batch size is 256
Learning rate warm-up and decay
Training+testing with best hyperparameters repeated 5 times with
different random seeds
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Take Home Messages III

Relaxed smoothness is a closer assumption to the real world
It allows to prove that a (minor) variant of Adam is provable better
than SGD
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Summary

To design the next generation of optimization algorithms, we
should understand why the current algorithms work
Assumptions are also crucial for our theoretical analyses

Some (unusual?) perspectives: scale-freeness, proximal
updates, and relaxed smoothness
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Thanks for your attention

Thanks to my collaborators: Michael Crawshaw, Ashok Cutkosky,
Mingrui Liu, Wei Zhang, Zhenxun Zhuang

http://francesco.orabona.com
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