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Introduction

Modern post-training neural network compression methods effectively re-
duce model size and increase speed without significantly compromising
performance. However, many of these techniques heavily depend on the
original training dataset at various stages of the pipeline—during the eval-
uation of compression schemes, the compression process itself, and, most
critically, during fine-tuning. However, in practical scenarios, access to train-
ing data may be limited due to privacy, security, licensing, or transmission
issues.

In this work, we introduce FRanDI, an innovative framework that enables
post-training neural network compression without the need for any data.
The FRanDI framework consists of three components:

Synthetic data generation pipeline that produces data mimicking the
original training dataset;

Feature Regression — a novel model recovery scheme that replaces
fine-tuning when real data and labels are unavailable;

Output Discrepancy — a new metric for evaluating model compression
policies without the use of labels.

Method

Synthetic Data Generation pipeline optimizes input images to match origi-
nal training data by reducing the distance between their feature distributions
across multiple feature maps of a pre-trained model:
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where statistics µ̂ = µ(x̂) and σ̂ = σ(x̂) are computed for image of x̂ within
the BN layer, µ∗ and σ∗ are original running estimates, L - number of layers.
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Figure 1. Synthetic data generation scheme overview.

Feature Regression utilizes a teacher-student approach on synthetic data
and minimizes the Feature Discrepancy corresponding layers in the original
and compressed models, reducing degradation after model compression:
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Output Discrepancy is a new proxy metric that correlates with the target
metric of the original model, enabling the evaluation of model compression
policies, without use of the dataset and labels.
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(a) Without BN calibration
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Figure 2. Compressed model accuracy vs OD proxy metric.

Experiments

Table 1. Results for data-free unstructured pruning with magnitude-based approach. CR -
compression ratio, ratio of non-zero parameters in the model.

Model Dataset CR BatchSize
Top-1 Accuracy, %

Original Fine-tuned Recovered
ResNet-18 Cifar-100 0.5 256 77.10 76.12 76.62
ResNet-18 ImageNet 0.8 256 69.76 69.16 69.20
ResNet-50 ImageNet 0.5 128 76.13 72.23 72.81
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Figure 3. Feature Regression vs fine-tuning on real data, CIFAR-100 dataset.

Table 2. Data-free quantization methods comparison.

Method Settings
Top-1 acc.
ZeroQ [2] 70.25
GDFQ [5] 71.53
DFQ [4] 40.35
ACIQ [1] 54.73
ZAQ [3] 72.67
Ours 75.90
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