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ON COMPUTATIONAL OPTIMIZATION

USGM adaptive method

Algorithm Universal Stochastic Gradient Method
1. Initialize: zp € dom f, D > 0, Hj :=
0, go ~ g(zo).
2. for k=0,1,... do

3: ; Tit1 = argMigedom f{(gr, ) +
Sl — w7}
4: Grr1 ~ G(Tr11).
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5: Hk_|_1 e Hk+

DQJF%T/%H ’
6: where 1.1 = ||xp1 — x|, Bri1 =
<9k+1 — Gk, Uk+1 — 33k>
7- end for
Notation:

The authors of the original paper consider an
upper bound for the stochastic approximation
of the symmetrized Bregman distance for points
xr and T (3k+1) as follows:

Bkﬂ — <f/<55k+1) — f/<33k) + A1, Tyt — fl?k> <L

(1.3)

where f'(xy) = Eglgr] € 0f (1), Apn =
Opt1 — O with 0y := gr — f'(xk) being the error

of the stochastic gradient (such that E|[d;]]* <
0-2), and Okl -— HA[.H_lH

Adaptive batching

In stochastic optimization, the variance of the
oradient estimates reduces as the batch size
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(2.2)
where F' is the sought function F' = ¢; + \j—% ~

Bri1, ¢ and ¢y are the values of Lyr}cﬂ and

O11Tr+1 respectively, predicted by the WLS
algorithm. The value of alpha was empirically
set to v = 0.01, s.t. the first points almost
diminish.

Batch size properties

When the epoch ends, we lower the batch

: B;_
size (B; 1= —

(BF) could have changed since the last epoch.
However, if it’s bigger than Bi;k, the algorithm
will increase it during the next iterations. By

doing so, we give the algorithm the ability to

), since the perfect batch size

not continue training with excessive resources
if the calculated batch size turns out to be too
big in the current circumstances or to increase
it even more if needed.

Since B = B+ By, B, = my By :
Vk (my € Z). That means we can use the
original Dataloader class from PyTorch ((4))
wihout any modifications and take m; batches
of initial size (By) on each iteration.

L Equal contribution

Main contributions

¢ New SOTA sequential recomendation model

¢ We applied quasiseparable mixer framework on the case of sequential recommendations.
The SOTA sequential recommendation model has been obtained.

¢ We examined various applications of selected spaces to the sequential recommendation
problem..

¢ Advanced training and optimization techniques.

¢ ORPO preference optimization application to LLM recommedner systems

o First USGM based(? ) method with non-emperical adaptive batch size choice.

Hydra4Rec framework

Architecture and matrix mixers

Hydra tully utilizes the matrix mixer framework to explore a novel bidirectional sequence mixer.
To achieve linear complexity, a special class of quasiseparable matrix is considered. A matrix
M is quasiseparable if every label element m;; satisfies:

(———>—
mij=<@€_ ifi=j, (1)
\C]TA;-(:Z-E, if 1 <

where each §; is a scalar, ;,; € RV*! and ; € RV*Y. Quasiseparable matrices can be used as
matrix mixers. This framework is called Hydra, which achieves O(L) complexity.

To apply the sequence-to-sequence potential of the Hydra block (2), we provide a cus-
tom Hydra layer that combines the Hydra block with a standard feed-forward network. The
main part of our standard architecture consists of Hydra layers. We have found that Hydra
layers work more effectively than standard Mamba layers in several cases. Then, we use the

Monolitic No Reference Model Optimization

ORPO application

Odds Ratio Preference Optimization (ORPO), (1) - is a novel preference optimization framework
that consolidates an odds ratio-based penalty. The odds of generating the output sequence y
from a given input sequence x are defined by:

log Fy(y|z) = %Em:bg Po(yr|z,y < ¥) (2)
_ DBlylz)
oddsy(y|z) = _HPQ o (3)

The odds ratio of the chosen response y,, over the rejected response y;, ORy(y., ¥;), indicates
how much more likely it is for the model 6 to generate y,, than y; given input x.

oddsy (1| )
OddS@(M‘SE) (4)

OR@(ywa yl) —

The objective function of ORPO consists of two components: 1) supervised fine-tuning (SFT)
loss (Lspr); 2) relative ratio loss (Log).

Lorro = By g,y [LsFT + A - LOR)] (5)

We created a pair data set, where each pair consists of a winner and a loser. It consists of 2
parts. The first part was created from the last 2 items from the user history where the winner
is the item with the higher rating and the loser is the opposite. To create the second part, we
used negative sampling training LightF'M model and took the last user’s movie as the winner
and the worst recommendation of LightE'M as the loser.
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ORPO Expiremental Setup

For the ORPO procedure we used Ir = 8e-6,
ORPO we used very low learning rates com-
pared to traditional SE'T or even DPO. This
value of 8e-6 comes from the original paper.
beta = 0.1 An appendix from the original paper
shows how it’s been selected with an ablation
study. We have used paged adamw optimizer
with gradient accumulation steps = 4. We have
trained model for 1 training epoch and evalu-
ated every 0.2 steps, also we set warmup steps to
10. We have used linear scheduler type. Other
parameters are dependent on capabilities of
your resources. lraining was conducted on 1

A100 80GB videocard.

Experiments

It is evident that Hydra shows metrics that are
similar, sometimes better to those of Mamba,
but its latency is four to five times lower. Si-
multaneously, models such as LlamaRec exhibit
superior per- formance. However, their substan-
tial parameter count may constrain their appli-
cability in real-world situations. Metrics-wise
and latency-wise, SSM-based models outper-
form the baseline SASRec model on average.

According to the study, SSMs can outperform
LLMs while still operating at a greater speed
since they require less number of parameters.

Table: Amazon Reviews '23 Video Games

LlamaRec 0.148 0.067 -

Training process experiments

Since the number of iterations of the algorithm
with adaptive batching and of those, with which
it was compared, differs, since the equality

Niterations = Dé’“atﬁs}ftsf;ze — const is not true for the

proposed algorithm, a scaled measure, which
is proportional to the epoch number is used as
the X axis in the comparison plot, displayed in
the Figure 1.

Figure: USGM with adaptive batching

ORPO procedure improvement is also pretty

References

[1] J. Hong, N. Lee, and J. Thorne. Orpo: Monolithic preference optimization without
reference model, 2024.

2] S. Hwang, A. Lahoti, T. Dao, and A. Gu. Hydra: Bidirectional state space models
through generalized matrix mixers, 2024.

[3] C. Liu, J. Lin, J. Wang, H. Liu, and J. Caverlee. Mambadrec: Towards efficient sequential
recommendation with selective state space models, 2024.

[4] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin,
N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf, E. Yang, Z. DeVito, M. Raison,
A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, and S. Chintala. Pytorch: An
imperative style, high-performance deep learning library, 2019.



	References

