
Exploring Applications of State Space Models and Advanced Training
Techniques in Sequential Recommendations
Baderko Makar1 Kulibaba Stepan1 Obozov Mark1 Nikolay Kutuzov Alexander Gasnikov

1 Equal contribution

USGM adaptive method

Algorithm Universal Stochastic Gradient Method

1: Initialize: x0 ∈ dom f , D > 0, H0 :=
0, g0 ∼ ĝ(x0).

2: for k = 0, 1, . . . do
3: xk+1 = arg minx∈dom f{⟨gk, x⟩ +

Hk

2 ∥x− xk∥2}.
4: gk+1 ∼ ĝ(xk+1).
5: Hk+1 := Hk + [β̂k+1−1

2Hkr2
k+1]+

D2+1
2r2

k+1
,

6: where rk+1 = ∥xk+1 − xk∥, β̂k+1 =
⟨gk+1 − gk, xk+1 − xk⟩.

7: end for

Notation:
The authors of the original paper consider an
upper bound for the stochastic approximation
of the symmetrized Bregman distance for points
xk and xk+1 (β̂k+1) as follows:

β̂k+1 = ⟨f ′(xk+1)− f ′(xk) + ∆k+1, xk+1 − xk⟩ ≤ Lνr1+ν
k+1+σk+1rk+1,

(1.3)
where f ′(xk) := Eξk

[gk] ∈ ∂f(xk), ∆k+1 :=
δk+1− δk with δk := gk−f ′(xk) being the error
of the stochastic gradient (such that E∥δk∥2 ≤
σ2), and σk+1 := ∥∆k+1∥.

Adaptive batching

In stochastic optimization, the variance of the
gradient estimates reduces as the batch size
increases. Specifically, the variance decreases
proportionally to 1

B . Concurrently, the standard
deviation (σ) of the gradient estimates decreases
at the rate of 1√

B
. From here 1.3 , we can

derive the equation 2.1. Thus, the variance and
standard deviation of the gradient estimations
decreases as the batch size increases.

β̂k+1 ≤ Lνr1+ν
k+1 + σk+1rk+1√

B
, (2.1)

As the coefficient β̂k+1 is computed on every
iteration of the algorithm, and the batch size is
known. We can use the Weighted Least Squares
method (with loss defined by the equation 2.2)
in linearized axes (1√

B
as the X axis and the

β̂k+1 as the Y axis) to compute the values of
Lνr1+ν

k+1 and σk+1rk+1. The intercept and the
slope of the linearized function respectively.

L =
K∑

k=0
(F (c1, c2, Bk)− β̂k+1)2 · (1− α)K−k,

(2.2)
where F is the sought function F = c1 + c2√

B
≈

β̂k+1, c1 and c2 are the values of Lνr1+ν
k+1 and

σk+1rk+1 respectively, predicted by the WLS
algorithm. The value of alpha was empirically
set to α = 0.01, s.t. the first points almost
diminish.

Batch size properties
When the epoch ends, we lower the batch
size (Bi := Bi−1k

λ), since the perfect batch size
(B∗i) could have changed since the last epoch.
However, if it’s bigger than Bi−1k

λ , the algorithm
will increase it during the next iterations. By
doing so, we give the algorithm the ability to
not continue training with excessive resources
if the calculated batch size turns out to be too
big in the current circumstances or to increase
it even more if needed.

Since Bk := Bk−1 + B0, Bk = mk B0 :
∀k (mk ∈ Z). That means we can use the
original Dataloader class from PyTorch ((4))
wihout any modifications and take mk batches
of initial size (B0) on each iteration.

Main contributions

⋄ New SOTA sequential recomendation model
⋄We applied quasiseparable mixer framework on the case of sequential recommendations.

The SOTA sequential recommendation model has been obtained.
⋄We examined various applications of selected spaces to the sequential recommendation

problem..
⋄ Advanced training and optimization techniques.
⋄ORPO preference optimization application to LLM recommedner systems
⋄ First USGM based(?) method with non-emperical adaptive batch size choice.

Hydra4Rec framework

Architecture and matrix mixers

Hydra fully utilizes the matrix mixer framework to explore a novel bidirectional sequence mixer.
To achieve linear complexity, a special class of quasiseparable matrix is considered. A matrix
M is quasiseparable if every label element mij satisfies:

mij =

−→
cT

i

−−→
A×i:j
−→bj, if i > j

δi, if i = j
←−
cT

j

←−−
A×j:i
←−bi, if i < j

, (1)

where each δi is a scalar, i,i∈ RN×1, and i ∈ RN×N . Quasiseparable matrices can be used as
matrix mixers. This framework is called Hydra, which achieves O(L) complexity.

To apply the sequence-to-sequence potential of the Hydra block (2), we provide a cus-
tom Hydra layer that combines the Hydra block with a standard feed-forward network. The
main part of our standard architecture consists of Hydra layers. We have found that Hydra
layers work more effectively than standard Mamba layers in several cases. Then, we use the
same PFFN that was introduced in Mamba4Rec.(3)

PFFN(H) = GELU(HW (1) + h(1))W (2) + b(2)

Figure: Hydra4Rec architecture

Where W (1) ∈ RD×4D, W (2) ∈ RD×4D, b(1) ∈ RD are parameters of two dense layers and we
use the GELU activation.

Such framework provide us significant latency boost!

Monolitic No Reference Model Optimization

ORPO application

Odds Ratio Preference Optimization (ORPO), (1) - is a novel preference optimization framework
that consolidates an odds ratio-based penalty. The odds of generating the output sequence y
from a given input sequence x are defined by:

log Pθ(y|x) = 1
m

m∑
t=1

log Pθ(yt|x, y < t) (2)

oddsθ(y|x) = Pθ(y|x)
1− Pθ(y|x)

(3)

The odds ratio of the chosen response yw over the rejected response yl, ORθ(yw, yl), indicates
how much more likely it is for the model θ to generate yw than yl given input x.

ORθ(yw, yl) = oddsθ(yw|x)
oddsθ(yl|x)

(4)

The objective function of ORPO consists of two components: 1) supervised fine-tuning (SFT)
loss (LSFT); 2) relative ratio loss (LOR).

LORPO = E(x,yw,yl) [LSFT + λ · LOR] (5)
We created a pair data set, where each pair consists of a winner and a loser. It consists of 2
parts. The first part was created from the last 2 items from the user history where the winner
is the item with the higher rating and the loser is the opposite. To create the second part, we
used negative sampling training LightFM model and took the last user’s movie as the winner
and the worst recommendation of LightFM as the loser.

ORPO Expiremental Setup

For the ORPO procedure we used lr = 8e-6,
ORPO we used very low learning rates com-
pared to traditional SFT or even DPO. This
value of 8e-6 comes from the original paper.
beta = 0.1 An appendix from the original paper
shows how it’s been selected with an ablation
study. We have used paged adamw optimizer
with gradient accumulation steps = 4. We have
trained model for 1 training epoch and evalu-
ated every 0.2 steps, also we set warmup steps to
10. We have used linear scheduler type. Other
parameters are dependent on capabilities of
your resources. Training was conducted on 1
A100 80GB videocard.

Experiments

It is evident that Hydra shows metrics that are
similar, sometimes better to those of Mamba,
but its latency is four to five times lower. Si-
multaneously, models such as LlamaRec exhibit
superior per- formance. However, their substan-
tial parameter count may constrain their appli-
cability in real-world situations. Metrics-wise
and latency-wise, SSM-based models outper-
form the baseline SASRec model on average.
According to the study, SSMs can outperform
LLMs while still operating at a greater speed
since they require less number of parameters.

Table: Amazon Reviews ’23 Video Games

Model HT@K NDCG@K MRR@K Latency # Parameters

SASRec 0.119 0.073 0.059 0.129 1.8M (100k)
Mamba4Rec 0.107 0.062 0.048 0.0088 1.8M (80k)
MamRec 0.083 0.033 0.025 2.51 130M
GPT4Rec 0.080 0.042 0.026 2.32 117M
2Mamba4Rec 0.118 0.061 0.048 0.0103 1.8M (80k)
Hydra4Rec 0.112 0.059 0.044 0.0037 750k
LlamaRec 0.150 0.098 0.064 - 7B

Table: MovieLens-1M

Model HT@K NDCG@K MRR@K Latency # Parameters

SASRec 0.224 0.117 0.084 0.128 320k (100k)
Mamba4Rec 0.303 0.178 0.139 0.0020 300k (80k)
MamRec 0.201 0.072 0.064 2.51 130M
GPT4Rec 0.212 0.074 0.060 3.23 117M
2Mamba4Rec 0.340 0.193 0.148 0.0034 300k (80k)
Hydra4Rec 0.308 0.179 0.140 0.0005 290k
LlamaRec 0.148 0.067 - - 7B

Training process experiments

Since the number of iterations of the algorithm
with adaptive batching and of those, with which
it was compared, differs, since the equality
Niterations = Dataset sise

Batch size = const is not true for the
proposed algorithm, a scaled measure, which
is proportional to the epoch number is used as
the X axis in the comparison plot, displayed in
the Figure 1.

Figure: USGM with adaptive batching

ORPO procedure improvement is also pretty
significant: References
[1] J. Hong, N. Lee, and J. Thorne. Orpo: Monolithic preference optimization without

reference model, 2024.
[2] S. Hwang, A. Lahoti, T. Dao, and A. Gu. Hydra: Bidirectional state space models

through generalized matrix mixers, 2024.
[3] C. Liu, J. Lin, J. Wang, H. Liu, and J. Caverlee. Mamba4rec: Towards efficient sequential

recommendation with selective state space models, 2024.
[4] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin,

N. Gimelshein, L. Antiga, A. Desmaison, A. Köpf, E. Yang, Z. DeVito, M. Raison,
A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, and S. Chintala. Pytorch: An
imperative style, high-performance deep learning library, 2019.

	References

