Optimization and tensor decompositions

Eugene Tyrtyshnikov

Marchuk Institute of Numerical Mathematics Russian Academy of Sciences

Lomonosov Moscow State University

Moscow Institute of Physics and Tecnology

tee@inm.ras.ru

ICOMP-2024, Innopolis

1/29

4 ロ X 4 日 X 4 ミ X 4 ミ X - 2 - 4 0 Q Q Q

Why do we need data models?

An array $A = [a(i_1, \ldots, i_d)]$ of size $n \times \ldots \times n$ cannot be given by the list of all entries even for modest values of d.

If $d = 83$ and $n = 10$, then the number of entries 10^{83} equals the number of atoms in the Universe!

K ロンバイ (部) メイモンバ (毛) シーモー

2/29

 2990

We need *data representation models* with small sets of parameters and algorithms dealing only with these small sets.

A data-model paradigm of computations

- \blacktriangleright "Big objects" are represented through "small vectors" $A = A(p)$, $B = B(q)$, $C = C(s)$.
- ► Computing a "big object" $C = A * B$ is done by a *fast algorithm* that finds s from p and q . "Big objects" A and B never arise explicitly.
- \triangleright Data models for a wide class of applications can be based on low-rank matrices.

3/29

Low-rank matrix model

If A is a matrix of rank r , then

$$
A = \sum_{\alpha=1}^r u_{\alpha} v_{\alpha}^{\top} = UV^{\top}
$$

$$
U = [u_1, \ldots, u_r], \quad V = [v_1, \ldots, v_r]
$$

(matrices of size $n \times r$)

 $2rn \ll n^2$

4/29

イロト イ団ト イミト イミト ニミー のんぴ

Advantages of low rank

 \triangleright Data compression

In for matrices of size $n \times n$: $r \ll n \Rightarrow 2nr \ll n^2$

In for d-tensors of size $n \times ... \times n$: $r \ll n^{d-1} \Rightarrow$ dnr $\ll n^d$

- \triangleright Extraction of most meaningful information and suppression of noise
- \blacktriangleright Fast computations in low-rank formats

5/29

K □ ▶ K @ ▶ K 글 X K 글 X _ 글 → 9 Q Q →

Singular Value Decomposition (SVD)

It is a skeleton decomposition in which vectors u_1, \ldots, u_r u v_1, \ldots, v_r are orthogonal..

Afer normalization

$$
u_{\alpha}v_{\alpha}^{\top} = \sigma_{\alpha}u_{\alpha}v_{\alpha}^{\top}, \quad u_{\alpha} := u_{\alpha}/||u_{\alpha}||, \quad v_{\alpha} := v_{\alpha}/||v_{\alpha}||,
$$

we come up with a *Singular Value Decomposition*:

$$
A = \sum_{\alpha=1}^r \sigma_\alpha u_\alpha v_\alpha^\top = U \Sigma V^\top, \quad \Sigma = \begin{bmatrix} \sigma_1 & & \\ & \ddots & \\ & & \sigma_r \end{bmatrix},
$$

$$
\sigma_1 \geqslant \sigma_2 \geqslant \ldots \geqslant \sigma_r > \sigma_{r+1} = \ldots = \sigma_n = 0.
$$

6/29

Low-rank approximations by a truncated SVD

$$
\min_{\text{rank } B \leq k} ||A - B|| = ||A - A_k|| = \sqrt{\sum_{\alpha=k+1}^n \sigma_{\alpha}^2}
$$

$$
A_k = \sum_{\alpha=1}^k \sigma_\alpha u_\alpha v_\alpha^\top
$$

$$
||A|| = \sqrt{\sum_{i,j} |a_{ij}|^2}
$$
 (Frobenius norm)

4/ □ ▶ 4/ @ ▶ 4/ 할 ▶ 4/ 할 ▶ 이 할 수 있습니다. 2014년 12월

Tensor Train Model

$$
x_{i_1,\dots,i_d} = \sum_{\alpha_1=1}^{r_1} \dots \sum_{\alpha_{d-1}=1}^{r_{d-1}} g^{(1)}_{i_1,\alpha_1}\,g^{(2)}_{\alpha_1,i_2,\alpha_2}\,\dots\,g^{(d-1)}_{\alpha_{d-2},i_{d-1},\alpha_{d-1}}\,g^{(d)}_{\alpha_{d-1},i_d}
$$

Symbolic notation: $x = g^{(1)} \dots g^{(d)}$

Total number of TT-model parameters depends on d linearly: \sum^d $k=1$ $r_{k-1}r_k n_k \leq \text{dnr}^2$, $n = \max_k n_k$, $r = \max_k r_k$.

The train car sizes r_k are called TT-ranks.

4 ロ ▶ 4 레 ▶ 4 로 ▶ 4 로 ▶ 그로 → 9 의 이 8/29

Options to represent the train cars

► by matrices of size of size $r_{k-1}\times r_k$: $\ \ (\ G^{(k)}_{i_k}\)$ $(g_{i_k}^{(k)})_{\alpha_{k-1},\alpha_k}:=g_{\alpha_{k-1}}^{(k)}$ $\alpha_{k-1}, i_k, \alpha_k$

$$
x_{i_1,\dots,x_d} = \textit{\textsf{G}}_{i_1}^{(1)}\textit{\textsf{G}}_{i_2}^{(2)}\dots\textit{\textsf{G}}_{i_{d-1}}^{(d-1)}\textit{\textsf{G}}_{i_d}^{(d)},
$$

► by column vectors of size n_k : $(g^{(k)}(\alpha_{k-1}, \alpha_k))_{i_k} := g^{(k)}_{\alpha_{k-1}}$ $\alpha_{k-1}, i_k, \alpha_k$

$$
x=\sum_{\alpha_1=1}^{r_1}\ldots\sum_{\alpha_{d-1}=1}^{r_{d-1}}g^{(1)}(\alpha_0,\alpha_1)\otimes g^{(2)}(\alpha_1,\alpha_2)\otimes\ldots\otimes g^{(d)}(\alpha_{d-1},\alpha_d).
$$

4 ロ → 4 레 → 4 로 → 4 로 → 2 로 → 9 4 0 4 0 9/29

$r_k \ge \text{rank}(A_k), \quad (A_k)_{(i_1,...,i_k),(i_{k+1},...,i_d)} := x_{i_1,...,i_d}.$

Theorem.

Any tensor admits a TT-representation with $r_k = \text{rank}(A_k)$.

4 ロ ▶ 4 @ ▶ 4 블 ▶ 4 블 ▶ - 블 - ① 9 Q (29)

Find an approximation

$$
\tilde{x} = \tilde{g}^{(1)} \dots \tilde{g}^{(d)} \; \approx \; x = g^{(1)} \dots g^{(d)}
$$

with smaller TT-ranks and a guaranteed accuracy.

10→ 1日→ 1월→ 1월→ 1월 1990 11/29

Reducing the rank of kth car

$$
x_{i_1,...,i_d} = G_{i_1}^{(1)} \dots G_{i_d}^{(d)}
$$

$$
u_{i_1,...,i_k} = G_{i_1}^{(1)} \dots G_{i_k}^{(k)} \text{ (rows)}, \quad v_{i_{k+1},...,i_d} = G_{i_{k+1}}^{(k+1)} \dots G_{i_d}^{(d)} \text{ (columns)}
$$

$$
A_k = U_k V_k
$$

 \triangleright Orthogonalize columns in U_k and rows in V_k :

$$
U_k = P_k S_k, \quad dV_k = T_k Q_k \Rightarrow A_k = U_k V_k = P_k B_k Q_k, \quad B_k = S_k T_k.
$$

- ► Approximate $B_k \approx \tilde{B}_k$ with $\tilde{r}_k < r_k$ and $||B_k \tilde{B}_k|| = \varepsilon$.
- \blacktriangleright Define tensor \tilde{x} by $\tilde{A}_k := P_k \tilde{B}_k Q_k$. Then

$$
||x-\tilde{x}||=||A_k-\tilde{A}_k||=||B_k-\tilde{B}_k||=\varepsilon.
$$

(ロ) (@) (경) (경) (경) 경 ⊙90 12/29

Rank reduction can be fast

$$
\Pi_k' = \begin{bmatrix} G_1^{(k)} \\ \dots \\ G_{n_k}^{(k)} \end{bmatrix}, \quad \Pi_k'' = \begin{bmatrix} G_1^{(k)} & \dots & G_{n_k}^{(k)} \end{bmatrix}.
$$

- ► Train car $g^{(k)}$ is called *left-orthogonal* if Π'_k has orthonormal columns.
- ► Train car $g^{(k)}$ is called *right-orthogonal* if Π''_k has orthonormal rows.

- If $g^{(1)},...,g^{(k)}$ are left-orthogonal, then U_k has orthonormal columns.
- If $g^{(k+1)},...,g^{(d)}$ are right-orthogonal, then V_k has orthonormal rows.

10 → 1日 → 1만 → 1만 → 만든 수이이어 13/29

Make the first car left-orthogonal

$$
(\mathit{U_{k}})_{(i_{1},...,i_{k}),\alpha_{k}}=\sum_{\alpha_{1},...,\alpha_{k-1}}g_{i_{1},\alpha_{1}}^{(1)}\dots g_{\alpha_{k-1},i_{k},\alpha_{k}}^{(k)}\\ g_{i_{1},\alpha_{1}}^{(1)}=\sum_{\beta_{1}}p_{i_{1},\beta_{1}}^{(1)}s_{\beta_{1},\alpha_{1}}^{(1)}\\ g_{\beta_{1},i_{2},\alpha_{2}}^{(2)}:=\sum_{\alpha_{1}}\mathsf{s}_{\beta_{1},\alpha_{1}}^{(1)}g_{\alpha_{1},i_{2},\alpha_{2}}^{(2)}
$$

$$
(U_k)_{(i_1,\ldots,i_k),\alpha_k}=\sum_{\beta_1,\alpha_2,\ldots,\alpha_{k-1}}\; \rho^{(1)}_{i_1,\beta_1}\, g^{(2)}_{\beta_1,i_2,\alpha_2}\,\ldots\,\, g^{(k)}_{\alpha_{k-1},i_k,\alpha_k}
$$

Eugene Tyrtyshnikov [Mathematics and Computations](#page-0-0)

4 ロ → 4 @ → 4 플 → 4 플 → 2 → 9 9 0 + 14/29

Fast structured SVD for the associated matrix A_k

$$
(U_k)_{(i_1,...,i_k),\alpha_k} = \sum_{\beta_1,...,\beta_{k-1},\beta_k} p_{i_1,\beta_1}^{(1)} p_{\beta_1,i_2,\beta_2}^{(2)} \cdots p_{\beta_{k-1},i_k,\beta_k}^{(k)} s_{\beta_k,\alpha_k}^{(k)}
$$

$$
(V_k)_{\alpha_k,(i_{k+1},...,i_d)} = \sum_{\gamma_k,\gamma_{k+1},...,\gamma_{d-1}} t_{\alpha_k,\gamma_k}^{(k+1)} q_{\gamma_k,i_{k+1},\gamma_{k+1}}^{(k+1)} \cdots q_{\gamma_{d-1},i_d}^{(d)}
$$

$$
x_{i_1,\dots,i_d} = \sum_{\beta_1,\dots,\beta_k,\gamma_k,\dots,\gamma_{d-1}} p^{(1)}_{i_1,\beta_1} \dots p^{(k)}_{\beta_{k-1},i_k,\beta_k} h^{(k)}_{\beta_k,\gamma_k} q^{(k+1)}_{\gamma_k,i_{k+1},\gamma_{k+1}} \dots q^{(d)}_{\gamma_{d-1},i_d}
$$

$$
h_{\beta_k,\gamma_k}^{(k)} = \sum_{\alpha_k} s_{\beta_k,\alpha_k}^{(k)} t_{\alpha_k,\gamma_k}^{(k+1)}
$$

 $g^{(1)}\ \dots\ g^{(d)} ~=~ p^{(1)}{\ \dots\ p^{(k)}{\ \ h^{(k)}{\ \ q^{(k+1)}{\ \dots\ q^{(d)}}}}$

Eugene Tyrtyshnikov [Mathematics and Computations](#page-0-0)

10 → 1日→ 1월 → 1월 → 1월 → 990 15/29

$g_1g_2g_3g_4g_5 \to g_1g_2g_3g_4g_5 \to g_1g_2g_3g_4g_5 \to g_1g_2g_3g_4g_5$

$g_1g_2g_3g_4g_5 \rightarrow g_1g_2g_3g_4g_5 \rightarrow g_1g_2g_3g_4g_5 \rightarrow g_1g_2g_3g_4g_5$

FAST: total number of operations is of order dnr^3 . SAFE: accuracy estimate is guaranteed.

16/29

K □ ▶ K @ ▶ K 글 ▶ K 글 ▶ → 글 → K Q Q O

Cross Column-Row Approximation

 \hat{A} , \hat{G} - 2×2

How to find a "good cross"

Maximal volume principle

THEOREM (Goreinov, Tyrtyshnikov).

Assume that $A_{11} \in \mathbb{C}^{r \times r}$ is a maximal volume block among all $r \times r$ blocks in

$$
A = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix}, \quad r = \text{rank}(A + F).
$$

Then

$$
||A - CA_{11}^{-1}R||_{C} \leq (r+1)^{2}||F||_{C},
$$

$$
C = \begin{bmatrix} A_{11} \\ A_{21} \end{bmatrix}, \quad R = \begin{bmatrix} A_{11} & A_{12} \end{bmatrix}.
$$

4 ロ ▶ 4 레 ▶ 4 로 ▶ 4 로 ▶ - 로 - 9040 - 19/29

Using more columns and rows

Can we obtain a better rank-r approximation using more columns and rows? And how much better?

Theorem (N.Zamarashkin, A.Osinsky'2017).

Assume that $A_{11} \in \mathbb{C}^{p \times q}$ is of rank not smaller than r and has the maximal r-projective volume

$$
\mathcal{V}(A_{11}):=\prod_{i=1}^r\sigma_i(A)
$$

among all $p \times q$ submatrices in A. Then

$$
||A - C(A_{11})_r^{\dagger} R||_C \leq \sqrt{1 + \frac{r}{p-r+1}} \sqrt{1 + \frac{r}{q-r+1}} ||F||_2.
$$

4 ロ → 4 @ → 4 플 → 4 플 → - 플 → 9 9 0 20/29

How to find a "good volume block"

Pick up an invertible block $\hat{C} \in \mathbb{R}^{k \times k}$ in $C \in \mathbb{R}^{n \times k}$ and get to a matrix

$$
C\hat{C}^{-1} = \begin{bmatrix} 1 & & & & \\ & \ddots & & & \\ & & \ddots & & \\ q_{r+1,1} & \dots & q_{r+1,r} \\ \dots & \dots & \dots & \dots \\ q_{n1} & \dots & q_{nr} \end{bmatrix}
$$

For \hat{C} to be of maximal volume it is necessary that $|q_{ii}| \leq 1$, $r+1 \leq i \leq n$, $1 \leq j \leq r$. If not, then swap two rows and increase the volume!

D.Knuth, Semi-optimal bases for linear dependencies, Linear and Mulilinear Algebra, 1985

4 ロ → 4 레 → 4 페 → 4 페 → 1 페 레 레 레 레 레 레 레 레 레 레 카 아이에 21/29

In the column submatrix $C \in \mathbb{R}^{n \times k}$ look for k "good rows". They determine a row submatrix $R \in \mathbb{R}^{k \times n}$ where we select k "good columns". The new columns give us a new columns submatrix $C \in \mathbb{R}^{k \times n}$ in which we pick up k "good rows". And so on.

4 ロ ▶ 4 @ ▶ 4 블 ▶ 4 블 ▶ - 블 - ① 9.0 22/29

With high probability this algorithm leads to a block of close to maximal volume. It becomes a base for a new heuristic global optimization algorithm. For some applicaions (eg docking in the drug design) it appears 2-3 orders better than genetic algorithms.

Direct docking in the drug design

ACCOMMODATION OF LIGAND INTO PROTEIN

Direct docking in the drug design

ACCOMMODATION OF LIGAND INTO PROTEIN

Tensor Train Learning and Optimization

Tensor Train:

$$
a_{i_1,\dots,i_d} = \sum_{\alpha_1=1}^{r_1} \dots \sum_{\alpha_{d-1}=1}^{r_{d-1}} g_{i_1 \alpha_1}^{(1)} g_{\alpha_1 i_2 \alpha_2}^{(2)} \dots g_{\alpha_{d-2} i_{d-1} \alpha_{d-1}}^{(d-1)} g_{\alpha_{d-1} i_d}^{(d)}
$$

= $G_{i_1}^{(1)} G_{i_2}^{(2)} \dots G_{i_{d-1}}^{(d-1)} G_{i_d}^{(d)}$

Algorithms use structured low-rank representations of certain associated matrices

$$
A_k = [a_{i_1\ldots i_k;i_{k+1}\ldots i_d}^k]_{(n_1\ldots n_k)\times (n_{k+1}\ldots n_d)}
$$

$$
a_{i_1\ldots i_k;i_{k+1}\ldots i_d}^k = a_{i_1,\ldots,i_d}
$$

4 ロ → 4 레 → 4 레 → 4 레 → 1 - 1 - 24 + 24 + 24 + 24 + 24 + 25 + 25 + 26 + 26 + 26 + 26 + 27 + 28 + 29

Fast summation of astronomically big vector

$$
i=\overline{i_1i_2\ldots i_d} \qquad d=83
$$

$$
a(i) = a(i_1,\ldots,i_d) = \sum_{\alpha_1,\ldots,\alpha_{d-1}} g_1(i_1,\alpha_1) g_2(\alpha_1,i_2,\alpha_2) \ldots g_d(\alpha_{d-1},i_d)
$$

$$
\sum_{i_1,\dots,i_d} a(i_1,\dots,i_d) = \sum_{\alpha_1,\dots,\alpha_{d-1}} \hat{g}_1(\alpha_1) \hat{g}_2(\alpha_1,\alpha_2) \dots \hat{g}_d(\alpha_{d-1})
$$

$$
\hat{g}_k = \sum_{i_k} g_k
$$

4 ロ → 4 @ → 4 할 → 4 할 → 1 할 → 9 Q Q + 25/29

Tensor Train and quadratures

$$
I(d) = \int \sin(x_1 + x_2 + \ldots + x_d) dx_1 dx_2 \ldots dx_d =
$$

$$
\operatorname{Im} \int_{[0,1]^d} e^{i(x_1 + x_2 + \ldots + x_d)} dx_1 dx_2 \ldots dx_d = \operatorname{Im} \left(\left(\frac{e^i - 1}{i} \right)^d \right).
$$

 $n=11$ nodes per one dimension $\;\Rightarrow\;$ as amny as n^d values! But only neglible part is computed.

K ロ → K @ → K 할 → K 할 → 기를 → 이익단 (26/29)

Tensorization of vectors and matrices

Any vector of size $N = n_1 \ldots n_d$ can be regarded as a d-array, and any $N \times N$ matrix

$$
a(i,j) = a(i_1 \ldots i_d, j_1 \ldots j_d)
$$

can be viewed as as $2d$ -array, or better, as a d -array of size $n_1^2 \times \ldots \times n_d^2$ of the form

 $a(i_1i_1,\ldots,i_d i_d)$

Tensorization followed up by Tensor Train construction can dramatically decrease the number of representation parameters in the model!

4 ロ ▶ 4 @ ▶ 4 블 ▶ 4 블 ▶ - 블 - ① 9.0 27/29

We may have a blessing of dimensionality!

- \triangleright For astronomically large data we must look for an adequate low-parametric models.
- \triangleright For conventional big data tensorization may lead to tremendously efficient representation models.

4 ロ ▶ 4 @ ▶ 4 블 ▶ 4 블 ▶ - 블 - ① 9 ① 28/29

Thanks for your kind attention!

Eugene Tyrtyshnikov [Mathematics and Computations](#page-0-0)