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Why do we need data models?

An array A = [a(i1, . . . , id)] of size n× . . .× n cannot be given
by the list of all entries even for modest values of d .

If d = 83 and n = 10, then the number of
entries 1083 equals the number of atoms
in the Universe!

We need data representation models with small sets of
parameters and algorithms dealing only with these small sets.
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A data-model paradigm of computations

I “Big objects” are represented through “small vectors”
A = A(p), B = B(q), C = C (s).

I Computing a “big object” C = A ∗B is done by a fast algorithm that
finds s from p and q. “Big objects” A and B never arise explicitly.

I Data models for a wide class of applications can be based on
low-rank matrices.
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Low-rank matrix model

If A is a matrix of rank r , then

A =
r∑

α=1

uαv
>
α = UV>

U = [u1, . . . , ur ], V = [v1, . . . , vr ]

(matrices of size n × r)

2rn� n2
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Advantages of low rank

I Data compression

I for matrices of size n × n:
r � n ⇒ 2nr � n2

I for d-tensors of size n × . . .× n:
r � nd−1 ⇒ dnr � nd

I Extraction of most meaningful information and
suppression of noise

I Fast computations in low-rank formats
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Singular Value Decomposition (SVD)

It is a skeleton decomposition in which vectors u1, . . . , ur и
v1, . . . , vr are orthogonal..

Afer normalization

uαv
>
α = σαuαv

>
α , uα := uα/||uα||, vα := vα/||vα||,

we come up with a Singular Value Decomposition:

A =
r∑

α=1

σαuαv
>
α = UΣV>, Σ =

σ1
. . .

σr

 ,
σ1 > σ2 > . . . > σr > σr+1 = . . . = σn = 0.
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Low-rank approximations by a truncated SVD

min
rankB6k

||A− B || = ||A− Ak || =

√√√√ n∑
α=k+1

σ2
α

Ak =
k∑

α=1

σαuαv
>
α

||A|| =

√∑
i ,j

|aij |2 (Frobenius norm)
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Tensor Train Model

xi1,...,id =
r1∑

α1=1

. . .

rd−1∑
αd−1=1

g
(1)
i1,α1

g
(2)
α1,i2,α2

. . . g
(d−1)
αd−2,id−1,αd−1

g
(d)
αd−1,id

Symbolic notation: x = g (1) . . . g (d)

Total number of TT-model parameters depends on d

linearly:
d∑

k=1
rk−1rknk 6 dnr 2, n = max

k
nk , r = max

k
rk .

The train car sizes rk are called TT-ranks.
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Options to represent the train cars

I by matrices of size of size rk−1 × rk : (G
(k)
ik

)αk−1,αk
:= g

(k)
αk−1,ik ,αk

xi1,...,xd = G
(1)
i1

G
2)
i2
. . .G

(d−1)
id−1

G
(d)
id
,

I by column vectors of size nk :
(
g (k)(αk−1, αk)

)
ik

:= g
(k)
αk−1,ik ,αk

x =
r1∑

α1=1

. . .

rd−1∑
αd−1=1

g (1)(α0, α1)⊗g (2)(α1, α2)⊗. . .⊗g (d)(αd−1, αd).
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Everything reduces to matrices

rk > rank (Ak), (Ak)(i1,...,ik ),(ik+1,...,id ) := xi1,...,id .

Theorem.

Any tensor admits a TT-representation with rk = rank (Ak).
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TT-rank reduction

Find an approximation

x̃ = g̃ (1) . . . g̃ (d) ≈ x = g (1) . . . g (d)

with smaller TT-ranks and a guaranteed accuracy.
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Reducing the rank of kth car

xi1,...,id = G
(1)
i1
. . .G

(d)
id

ui1,...,ik = G
(1)
i1
. . .G

(k)
ik

(rows), vik+1,...,id = G
(k+1)
ik+1

. . .G
(d)
id

(columns)

Ak = UkVk

I Orthogonalize columns in Uk and rows in Vk :

Uk = PkSk , dVk = TkQk ⇒ Ak = UkVk = PkBkQk , Bk = SkTk .

I Approximate Bk ≈ B̃k with r̃k < rk and ||Bk − B̃k || = ε.

I Define tensor x̃ by Ãk := PkB̃kQk . Then

||x − x̃ || = ||Ak − Ãk || = ||Bk − B̃k || = ε.
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Rank reduction can be fast

Π′k =

G (k)
1
. . .

G
(k)
nk

 , Π′′k =
[
G

(k)
1 . . . G

(k)
nk

]
.

I Train car g (k) is called left-orthogonal if Π′k has orthonormal columns.

I Train car g (k) is called right-orthogonal if Π′′k has orthonormal rows.

I If g (1), . . . , g (k) are left-orthogonal, then Uk has orthonormal columns.

I If g (k+1), . . . , g (d) are right-orthogonal, then Vk has orthonormal rows.
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Make the first car left-orthogonal

(Uk)(i1,...,ik ),αk
=

∑
α1,...,αk−1

g
(1)
i1,α1

. . . g
(k)
αk−1,ik ,αk

g
(1)
i1,α1

=
∑
β1

p
(1)
i1,β1

s
(1)
β1,α1

g
(2)
β1,i2,α2

:=
∑
α1

s
(1)
β1,α1

g
(2)
α1,i2,α2

(Uk)(i1,...,ik ),αk
=

∑
β1,α2,...,αk−1

p
(1)
i1,β1

g
(2)
β1,i2,α2

. . . g
(k)
αk−1,ik ,αk
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Fast structured SVD for the associated matrix Ak

(Uk)(i1,...,ik ),αk
=

∑
β1,...,βk−1,βk

p
(1)
i1,β1

p
(2)
β1,i2,β2

. . . p
(k)
βk−1,ik ,βk

s
(k)
βk ,αk

(Vk)αk ,(ik+1,...,id ) =
∑

γk ,γk+1,...,γd−1

t(k+1)
αk ,γk

q
(k+1)
γk ,ik+1,γk+1

. . . q
(d)
γd−1,id

xi1,...,id =
∑

β1,...,βk ,γk ,...,γd−1

p
(1)
i1,β1

. . . p
(k)
βk−1,ik ,βk

h
(k)
βk ,γk

q
(k+1)
γk ,ik+1,γk+1

. . . q
(d)
γd−1,id

h
(k)
βk ,γk

=
∑
αk

s
(k)
βk ,αk

t(k+1)
αk ,γk

g (1) . . . g (d) = p(1) . . . p(k) h(k) q(k+1) . . . q(d)
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Fast reduction of TT-ranks

g1g2g3g4g5 → g1g2g3g4g5 → g1g2g3g4g5 → g1g2g3g4g5

g1g2g3g4g5 → g1g2g3g4g5 → g1g2g3g4g5 → g1g2g3g4g5

FAST: total number of operations is of order dnr 3.

SAFE: accuracy estimate is guaranteed.
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Cross Column-Row Approximation
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How to find a “good cross”
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Maximal volume principle

THEOREM (Goreinov, Tyrtyshnikov).

Assume that A11 ∈ Cr×r is a maximal volume block among all
r × r blocks in

A =

[
A11 A12
A21 A22

]
, r = rank (A + F ).

Then

||A− CA−1
11 R ||C 6 (r + 1)2||F ||C ,

C =

[
A11
A21

]
, R =

[
A11 A12

]
.
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Using more columns and rows

Can we obtain a better rank-r approximation using more
columns and rows? And how much better?

Theorem (N.Zamarashkin, A.Osinsky’2017).

Assume that A11 ∈ Cp×q is of rank not smaller than r and has
the maximal r -projective volume

V(A11) :=
r∏

i=1

σi(A)

among all p × q submatrices in A. Then

||A− C (A11)†rR ||C 6
√

1 +
r

p − r + 1

√
1 +

r

q − r + 1
||F ||2.
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How to find a “good volume block”

Pick up an invertible block Ĉ ∈ Rk×k in C ∈ Rn×k and get to a matrix

CĈ−1 =



1
. . .

1
qr+1,1 ... qr+1,r

... ... ...
qn1 ... qnr



For Ĉ to be of maximal volume it is necessary that
|qij | 6 1, r + 1 6 i 6 n, 1 6 j 6 r .

If not, then swap two rows and increase the volume!

D.Knuth, Semi-optimal bases for linear dependencies,

Linear and Mulilinear Algebra, 1985
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Search for large elements in low-rank matrices

In the column submatrix C ∈ Rn×k look for
k “good rows”. They determine a row sub-
matrix R ∈ Rk×n where we select k “good
columns”. The new columns give us a new
columns submatrix C ∈ Rk×n in which we
pick up k “good rows”. And so on.

With high probability this algorithm leads to a block of close to maximal

volume. It becomes a base for a new heuristic global optimization algorithm.

For some applicaions (eg docking in the drug design) it appears 2-3 orders

better than genetic algorithms.
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Direct docking in the drug design

ACCOMMODATION OF LIGAND INTO PROTEIN

LIGAND
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Direct docking in the drug design

ACCOMMODATION OF LIGAND INTO PROTEIN

LIGAND
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Tensor Train Learning and Optimization

Tensor Train:

ai1,...,id =
r1∑

α1=1

. . .

rd−1∑
αd−1=1

g
(1)
i1α1

g
(2)
α1i2α2

. . . g
(d−1)
αd−2id−1αd−1

g
(d)
αd−1id

= G
(1)
i1

G
(2)
i2

. . . G
(d−1)
id−1

G
(d)
id

Algorithms use structured low-rank representations
of certain associated matrices

Ak = [aki1...ik ;ik+1...id
](n1...nk )×(nk+1...nd )

aki1...ik ;ik+1...id
= ai1,...,id
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Fast summation of astronomically big vector

i = i1i2 . . . id d = 83

a(i) = a(i1, . . . , id) =
∑

α1,...,αd−1

g1(i1, α1)g2(α1, i2, α2) . . . gd(αd−1, id)

∑
i1,...,id

a(i1, . . . , id) =
∑

α1,...,αd−1

ĝ1(α1)ĝ2(α1, α2) . . . ĝd(αd−1)

ĝk =
∑
ik

gk
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Tensor Train and quadratures

I (d) =

∫
sin(x1 + x2 + . . . + xd) dx1dx2 . . . dxd =

Im
∫
[0,1]d

e i(x1+x2+...+xd ) dx1dx2 . . . dxd = Im((
e i − 1

i
)d).

n = 11 nodes per one dimension ⇒ as amny as nd values!
But only neglible part is computed.

d I (d) Rel.error Time
100 -3.926795e-03 2.915654e-13 0.77
1000 -2.637513e-19 3.482065e-11 11.60
2000 2.628834e-37 8.905594e-12 33.05
4000 9.400335e-74 2.284085e-10 105.49
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Tensorization of vectors and matrices

Any vector of size N = n1 . . . nd can be regarded as a d-array, and
any N × N matrix

a(i , j) = a(i1 . . . id , j1 . . . jd)

can be viewed as as 2d-array, or better, as a d-array of size
n2
1 × . . .× n2

d . of the form

a(i1j1, . . . , id jd)

Tensorization followed up by Tensor Train
construction can dramatically decrease the number of
representation parameters in the model!
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We may have a blessing of dimensionality!

I For astronomically large data we must look for an
adequate low-parametric models.

I For conventional big data tensorization may lead
to tremendously efficient representation models.
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Thanks for your kind attention!
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