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Why do we need data models?

An array A = [a(i1, ..., iy)] of size n X ... X n cannot be given
by the list of all entries even for modest values of d.

If d = 83 and n = 10, then the number of [
entries 1083 equals the number of atoms
in the Universe! i

We need data representation models with small sets of
parameters and algorithms dealing only with these small sets.
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A data-model paradigm of computations

» "“Big objects” are represented through “small vectors”
A= A(p), B=B(g), C=C(s).

» Computing a “big object” C = Ax B is done by a fast algorithm that
finds s from p and g. “Big objects’ A and B never arise explicitly.

» Data models for a wide class of applications can be based on
low-rank matrices.
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Low-rank matrix model

If Ais a matrix of rank r, then
A= Z Ugv, = UVT
a=1
U=lu,...,u], V=|[w,...,v]
(matrices of size n x r)

2rn < n?
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Advantages of low rank

» Data compression

» for matrices of size n x n:
r<n = 2nr<n?

» for d-tensors of size n X ... x n:

r<ndl = dnr<n?

» Extraction of most meaningful information and
suppression of noise

» Fast computations in low-rank formats

Eugene Tyrtyshnikov Mathematics and Computations



Singular Value Decomposition (SVD)

It is a skeleton decomposition in which vectors uy, ..., u, n
Vi,...,V, are orthogonal..

Afer normalization

UoV,) = 0oV, Uy = ts/||tal],  Va = va/||Vall,

o)

we come up with a Singular Value Decomposition:

01
A= Zaaua —UzVv’, Y= :

o

012002...20,>0,41=...=0,=0.
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Low-rank approximations by a truncated SVD

min_[[A— B|| = [|[A - Ad| =

rank B<k
k
Al = Zaauavl
a=1
A= > lag[> (Frobenius norm)

i
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Tensor Train Model

rd—1
_ E ’ § ' (1) (2 (d-1) (d)
Xigyoyi 8ir,01 8arinar  Bag aig 1,001 8oy 1,ia
a1=1 ag-1=1

Symbolic notation: x = g .. g(9)

Total number of TT-model parameters depends on d
d

linearly: >~ re_inne < dnr?, n= max g, 1= max r.
k=1

The train car sizes r, are called TT-ranks.
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Options to represent the train cars

: : : i (k) _ (k)
> by matrices of size of size re_1 X ri: (G )ose_y.on = 8oy 1ivone

Xy = GG . GG
PRRRE) I I ld—1

Iqg

> by column vectors of size n.: (g (a1, &k)) = gg:) i
rd—1
X = Z Z ao, ai) ®g( )(al, a3)®. . .®g(d)(ozd,1, ag).
a;=1 ag_1=1
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Everything reduces to matrices

ric 2 1ank (Ax),  (Ak) (i), (ks tsnia) = Xitpoonig-

Theorem.

Any tensor admits a T T-representation with r, = rank (Ay).
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TT-rank reduction

Find an approximation
x=gW. . g~ x=g0_ gl

with smaller TT-ranks and a guaranteed accuracy.
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Reducing the rank of kth car

Uy i = G,.(ll) . G,.(kk) (rows), Vi, ..y = G,.(kljl) . G,.gd) (columns)

» Orthogonalize columns in Uy and rows in V:

Uk:PkSlﬂ de: Tka = Ak: Uka:PkBka7 BkZSka-

» Approximate By ~ B with 7 < r, and || Bk — BkH =e.
» Define tensor X by Ac = P.B,Q,. Then

x = &l = 1A — Al = 1B — Bill = <.

Eugene Tyrtyshnikov Mathematics and Computations



Rank reduction can be fast

G
M=o M=o el
Gk

v

Train car gl¥) is called left-orthogonal if M), has orthonormal columns.

» Train car g(¥) is called right-orthogonal if 1/ has orthonormal rows.

v

If g, ... g are left-orthogonal, then Uy has orthonormal columns.

v

If g+ . g(@ are right-orthogonal, then V) has orthonormal rows.
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Make the first car left-orthogonal

1 k
(Uk)(i1,...,ik),ak = Z gi(1,c)x1 . g(gk) 1ok,

01500, Qk—1

(1)
g’l:al Z Pii, B1 51 fe%1

(2) . (1) (2)
881,00 T SB1,01801,i2,00
a1
_ 1) (2 (k)
(Uk)(il,...,ik),ak - Z Piy .8, 8B1,in,00 * a1,k

ﬁ17a27"'7ak 1
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Fast structured SVD for the associated matrix A,

. _ 1) (2 (k) (k)
(Uk)(’l"“”k)’o‘k o Z Pii,81 PB1iin,Ba =+ PBi_1,ik,Bk Brocu
B1y-5Bk—1,Bk
_ k+1) . (k+1) (d)
(Vk)akv(ik+1:-~~7id) - Z tf(’éka"/k) Qi Tvacayia

Yk Vk+15--+3Yd—1

o (1) (k) (k) (k+1) (d)
Xioovsig = Z Piig1 = P18k MBioe Dviviksarvers * Dot
BseesBrs Yk Yd—1
(k) _ S(k) (k+1)
Bk Br>0tk ks Yk
ak

g gl = ) k) p) gk (@)
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Fast reduction of TT-ranks

8182838485 — 8182838485 — 8182838485 — 8182838485

8182838485 — 8182838485 — 8182838485 — 8182838485

FAST: total number of operations is of order dnr3.

SAFE: accuracy estimate is guaranteed.
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Cross Column-Row Approximation

N

A A
A—: }R —__*"C/A\dR
C
G X

A,
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How to find a “good cross”
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Maximal volume principle

THEOREM (Goreinov, Tyrtyshnikov).

Assume that A;; € C™" is a maximal volume block among all
r x r blocks in

_ [Aun A _
A_|:A21 A22}’ r =rank (A+ F).

Then

1A= CALRllc < (r +1)%|Fllc,

C - [A11:| 5 R - [All A12] .
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Using more columns and rows

Can we obtain a better rank-r approximation using more
columns and rows? And how much better?

Theorem (N.Zamarashkin, A.Osinsky'2017).

Assume that A;; € CP*9 is of rank not smaller than r and has
the maximal r-projective volume

A11 HU:

among all p x g submatrices in A. Then

r r
A= CAN)IR|lc <14+ ——— 1+ ———||F|]2.
1A= CCARYe < 14— [ T P
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How to find a “good volume block”

Pick up an invertible block € € R**¥ in C € R"™*¥ and get to a matrix

1
cct= 1
qr+1,1 qr+1,r
dni dnr

For € to be of maximal volume it is necessary that
lgs] <1, r+1<i<n, 1<j<r

If not, then swap two rows and increase the volume!

D.Knuth, Semi-optimal bases for linear dependencies,
Linear and Mulilinear Algebra, 1985
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Search for large elements in low-rank matrices

In the column submatrix C € R™* look for
k “good rows". They determine a row sub-
matrix R € R**" where we select k "good
" i,i columns”. The new columns give us a new
columns submatrix C € R**" in which we
pick up k “good rows". And so on.

)

With high probability this algorithm leads to a block of close to maximal
volume. It becomes a base for a new heuristic global optimization algorithm.
For some applicaions (eg docking in the drug design) it appears 2-3 orders

better than genetic algorithms.
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Direct docking in the drug design
ACCOMMODATION OF LIGAND INTO PROTEIN
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Direct docking in the drug design
ACCOMMODATION OF LIGAND INTO PROTEIN
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Tensor Train Learning and Optimization

Tensor Train:

rd—1
a; . (d-1) (d)
yeensld gum gauzaz : gad 20d—10g— 1gad 1id
a1=1 ag—1=1

= 6¢P6? ... 6o VeY

n ] Id—1 Id

Algorithms use structured low-rank representations
of certain associated matrices

_ k
Ak - [al'l...fk;fk+1...id](n1~~~nk)><(nk+1~~~nd)

’1---ik;ik+1---id - a"17-'~7id
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Fast summation of astronomically big vector

a(i)=a(in,....ia) = > &ilir,01)g(01,i2,02). .. ga(0tg-1, i)

ALy, QXd—1

Z a(il, ey id) = Z g\'l(al)é'g(al, az) e gd(ozd,l)

yeenyig ALy, QXd—1

8= e
ik
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Tensor Train and quadratures

I(d) :/Sin(X1+X2+--.—|-XC/) dxidxy ... dxy =

. el —1
Im elbatxetxd) gy . dxyg = Im((——)%).
[071]d )
n = 11 nodes per one dimension = as amny as n? values!
But only neglible part is computed.

d | I(d) Rel.error | Time
100 | -3.926795e-03 | 2.915654e-13 | 0.77
1000 | -2.637513e-19 | 3.482065e-11 | 11.60
2000 | 2.628834e-37 | 8.905594e-12 | 33.05
4000 | 9.400335e-74 | 2.284085e-10 | 105.49
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Tensorization of vectors and matrices

Any vector of size N = ny ... ng can be regarded as a d-array, and
any N x N matrix

a(i,j) = a(il...id, ./l_ld)

can be viewed as as 2d-array, or better, as a d-array of size

n? x ... x n3. of the form

a(i]jl, ce idjd)

Tensorization followed up by Tensor Train
construction can dramatically decrease the number of
representation parameters in the model!
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We may have a blessing of dimensionality!

» For astronomically large data we must look for an
adequate low-parametric models.

» For conventional big data tensorization may lead
to tremendously efficient representation models.
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Thanks for your kind attention!

3Ta KHMFa OTAUYAETCA OT TPAANLMOHHBIX
YHEGHIKOB: MOHATIS 1 $aKTbl NMHENHOI
2Nre6pbl BO MHOMX CllyUasX M3NOKEHb!
Kak aKThl MATPUUHOTO aHaNu3a.

E. E. THIPTBILIHUKOB

E. E. ToIpTBIlHMKoB

MATPUYHbIN
AHAIN3
N IMHENHASA
ANTEBPA

OTHOCUTENBHO CAMOCTORTENBHOM
ANCUMNAMHON.

TpeameT nuHeiiHoii anre6psi MoHUMaeTes
B PacLUMpeHHOM cMbiCTe, YacTo Mbi

MATPUYHbBIU AHANTU3 U TUHENHAS AJNTTEBPA

Henb3s HaTI B KaKVX-NGO y4eBHMKaX
1 Aaxe MoHorpadusx. B YacTHoCTH,
PaCCMATPUBAIOTCH MHOrOMEPHbIE Maccuebl,
KNaccuueckme U OTHOCUTENbHO HoBble
TEH30PHBIE PA3NOXEHNS, TeHIOPHbIe PaHT
W UX CB13b C Pa3PaBOTKOM BbICTPbIX
METONI0B YMHOMKeHMA MaTPuL
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