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Progress in Generative Al

Now (2024)
(results of generation of Kandinsky model by Sber)
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Progress in the field

Text prompt:
Flamingo,
surrealism, nature-
inspired, flowerpunk,
delicate materials,
flamboyant, studio
photography.

Text prompt: Cow in the style of
floral surrealism in the meadow,
nature-inspired camouflage,
flowerpunk, delicate materials,
flamboyant, studio photography.

Text Prompt: Tornado of flowers.



Approaches to Generative Modeling

Adversarial models (GANs, 2014)
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Diffusion models (DM, 2019)

Forward SDE (data — noise)
dx = f(x,t)dt + g(t)dw

score function

= [£6x,8) — ¢ (0] log ()] dt + g(t)aw @

Reverse SDE (noise — data)




Limitations of diffusion models

Slow sampling
To simulate the denoising process:

xe = [f(xe, t) — g2(t) Vi log p(xe, t)] t + g(t) W,
one uses the discretization (e.g., Euler simulation):

Xt—At = Xt — [f(xt, t) - gz(t)vx log P(Xt; f)]At + &,
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Diffusion trajectories in both SDE and ODE form are
not straight and are HARD to simulate.

Only noise to data generation

- The forward process is pre-defined and maps
complex data distribution to the normal distribution

=> The reverse process starts from gaussian noise
Forward SDE (data — noise)
dx = £(x, t)dt + g(t)dw
;orfuntlon o
dx = [f(x,t) — ¢° (t)Vx log p; (x)| dt + g(t)dw @

Reverse SDE (noise — data)

Cannot perform direct data-to-data translation, e.g
image-to-image style transfer or super-resolution.



Conditional diffusions vs data-to-data diffusions

Conditional diffusions use additional input as a condition to guide generation from noise.
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Long generation of the whole image from the noise

Data-to-data diffusions start from the input image and only add/modify the remaining details.

Faster generation

\ 4

Better quality




Data-to-data diffusions: Schrodinger Bridge (SB)

Schrodinger Bridge formulation

For two arbitrary distributions p, and p, it
aims to find a diffusion T, given by the SDE:

Tg : dx¢ = g(xt, t) dt + VedW,

——

"velocity”

which transforms p, to p; and minimizes
the energy:

mf —]ET g(xe, t)||%dt

-

W
"average kinetic energy”

(hyperparameter € regulates the amount
of noise in the trajectories)

Schrddinger Bridge
for image-to-image style transfer

e Data-to-data diffusion
e Can be trained without paired data
e The “most straight” trajectories



Image-to-Image Schrodinger Bridge (12SB) idea

1. Build a non-markovian forward process T using paired data coupling g .:,(Xg.X1)
and a stochastic bridge q(x; | Xq, X4):

~ Ogata(X0» X1)

Q(Xt|X0,X1) - N(Xt; l—Lt(XOa Xl)a Et)
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2. Learn a diffusion that is closest to the forward process T using Bridge Matching
(generalization of Flow Matching on diffusions):

dx: = g(x¢, t)dt + ﬂth Relation 5_?: ftl /BTdT

between SDE
g(xt, t) = argmin f g’ (x¢, t) — Bt
gl

X1 — Xt and bridge

2 4T 2.t
[Fdp " (xt, x1) parameters at'—fo Brdr

ot

Liu, Guan-Horng, et al. "I2SB: Image-to-Image Schrodinger Bridge." International Conference on Machine Learning. PMLR, 2023.



Image-to-Image Schrodinger Bridge (12SB) examples

|I2SB trajectories for colorization I2SB comparison with Palette (conditional
and sketch to image translations diffusion) on inpainting and SR

NFE=2 NFE=10 NFE=100

t=1 (input) t=2/3 - t=1/3 t=0.0 (output) Reference

Reference
Palette

BW - Color

Input
1°SB (Ours)

Reference
Palette

edges - shoes

Input
I°SB (Ours)

~
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Image-to-Image Schrodinger Bridge (I2SB) more results

Jpeg restoration SR with bicubic degradation :
Super-resolution
Method FID-10k | Method FID-10k
DDRM (Kawar et al., 2022b) 282 DDRM (Kawar et al., 2022a) TS Degraded Input (JPEG QF5)
IIGDM (Song et al., 2022) 8.6 DDNM (Wang et al., 2022b) 13.6
Palette (Saharia et al., 2022) 8.3 IIGDM (Song et al., 2022) 3.6
CDSB (Shi et al., 2022) 38.7 ADM (Dhariwal & Nichol, 2021)  14.8
I’SB (Ours) 4.6 CDSB (Shi et al., 2022) 13.6
12SB (Ours) 2.8
Gaussian deblurring Freform inpainting
Method FID-10k | Method FID-10k |
DDRM (Kawar et al., 2022a) 6.1 DDRM (Kawar et al., 2022a) 9./
DDNM (Wang et al., 2022b) 2.9 DDNM (Wang et al., 2022b) 32
Palette (Saharia et al., 2022) 3.1 Palette (Saharia et al., 2022) 4.0
CDSB (Shi et al., 2022) 7.7 CDSB (Shi et al., 2022) 8.5
I2SB (Ours) 3.0 I?SB (Ours) 2.9
Limitations:

e Requires paired data qy,,(Xo, X;) for training
e Schrddinger Bridge is restored only if “optimal” coupling g*(x,,X;) is used



Paired vs. Unpaired Learning

Supervised Unsupervised
Paired train samples are available: Only unpaired train samples are given:
{(x1,01)5 -5 (s )} {2000 s o s ks 403 5 s WA
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Issue: collecting/constructing pairs may Issue: ill-posed problem, many possible

be costly, non-trivial or impossible solutions (not all are practically meaningful)



lterative Bridge Matching

One may learn Bridge Matching diffusion T7+1 using another already learned
Bridge Matching diffusion inputs and outputs Tg ;. Itis called
(DSBM) [1] and generalizes the Rectified Flows

Tm = BM(T} )

As n— oo, T" converge to the Schrédinger Bridge.

BM /Q&‘- . BM Schrodinger Bridge

—

B T

Limitations: (1) One has to sample from the previously learned diffusion while learning
(2) One has to learn many diffusions iteratively = potential error accumulation, slow|

[1] Yuyang Shi, Valentin De Bortoli, Andrew Campbell, and Arnaud Doucet. Diffusion schrédinger bridge matching. In Thirty-seventh Conference on
Neural Information Processing Systems, 2023.



DSBM: Examples

Unpaired transfer (cat—wild) Unpaired transfer (male—female)
on AFHQ 512x512 dataset on Celeba 128x128 dataset

Cat (Input) —_— Wild (Output) Man (Input) diffuses to Woman (Output)

Problem: large NFE = 100 — long inference



Denoising Diffusion vs. Denoising Diffusion GAN

Denoising Diffusion

Method: learn continuous in time diffusion via
the conditional score matching

Forward SDE (data — noise)
dx = f(x,t)dt + g(t)dw —)@
-l e R TR
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Reverse SDE (noise — data)

Requires large NFE (=100)

Denoising Diffusion in practice

Method: discrete Markov process

Q(X1:T|x0) = ]___[ Q(xtlxt—l): Q(Xt|xt—1) = N(XtQ V31— !tht—laﬁtl)

t>1

Approximation as denoising process

po(xor) = p(xr) | [ po(xe-1lxe),  polxe—ilxe) = N(xe1; po(xs, 1), 07T)
t>1

q(xo) q(z1) qlz2) () q(zy) q(s)

g = = = <
Data Distributions

EEEE

q(xo|x5=X) g(xslas=X) glwelxs=X) q(wslws=X) g(zyz5=X)

True Denoising
Distributions




Denoising Diffusion vs. Denoising Diffusion GAN

Denoising Diffusion

Method: learn continuous in time diffusion via
the conditional score matching

Forward SDE (data — noise)
dx = f(x,t)dt + g(t)dw —)@

score function

dx = [£(x,t) gZ(t) dt + g(t)dw @

Reverse SDE (noise — data)

e

®

Requires large NFE (=100)

Denoising Diffusion GAN [2]

Method: learn markov chain in discrete time
via GAN (adversarial) loss

q(o) q(x1) q(x2) q(xs) q(zy)

EE=EE
STTTT

Requires just NFE=4

t

Problem: No generalization for the Bridge Matching

[2] Zhisheng Xiao, Karsten Kreis, and Arash Vahdat. Tackling the generative learning trilemma with denoising diffusion gans. In International Conference

on Learning Representations, 2021.



Adversarial Schrodinger Bridge Matching (ASBM, ours)

We proposed an adversarial bridge matching technique which can learn diffusion bridges using just
several transitions in discrete time instead of hundreds in the diffusion bridge matching

Result

3 101006
DS B M E ~80 more steps e ]
- nAnaaAAA

[3] Gushchin, N., Selikhanovych, D., Kholkin, S., Burnaev, E., & ar¥xiv
Korotin, A. (2024). Adversarial Schrodinger Bridge Matching.




Adversarial Schrodinger Bridge Matching

We have generalized DDGAN to Bridge Matching. Our idea is to represent the diffusion in
bridge matching diffusion by discrete time Markov chain with learnable transitions [3]

Bridge Matching and DSBM (before us) Adversarial Schrodinger Bridge Matching
(ASBM, )

NFE=100 NFE=4

They learn the diffusion drift: We just learn several transition densities:

N+1
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Extra Theory



Discrete reciprocal processes

o Finite-time projection of the Brownian bridge I/meo,ml:

N
PV (24, ..., ey |0, T1) = H pV (2, |2, _,, 1),
n=1

pWG (xtn ‘xtn—l ) xl) =

I
n—nl(xl —z )€

=N
(xtn|mtn—l + 1 . t'n,—l 1 . t’n,—l

o Distribution p"V* (x4, , ..., ¢, |70, z1) defines a discrete stochastic process, which
we call a discrete Brownian bridge
o Distribution g € Py 4.(RP*(N*2)) is a mixture of discrete Brownian bridges if

Q(.CU(), Ltyyee- 7'7;1:N7$1) — pWE (xtla oo 7$tN|$07 xl)Q(fUm 1'1),

where q(zg,x1) is a joint marginal distribution
o We denote the set of all such mixtures as R(N) C Pa qc(RP*V+2)) and call them
discrete reciprocal processes




Discrete Markovian processes

o Discrete process q € ’PQ,GC(RDX(N”)) is Markovian if

N+1
Q(an Ltys Ltgy - - - 7xtN7x1) - Q(xO) H Q(xtn|xtn—1)

n=1

o Let M(N) C Pauc(RP*(N+2)) by a set of all such discrete Markovian processes



Solution of static SB In discrete time

o Theorem: consider any discrete process q € Py qc(RP*(N+2)) which is
simultaneously reciprocal and markovian, i.e. ¢ € R(N) and ¢ € M(N) and has
marginals g(zo) = po(zo) and g(z1) = p1(z1):

We(

Ttyy--y Tty lx()a xl)Q('xO) 5131)
N+1

= q(z0) [] 9@t le),
n=1

Q(xO)wtp'"axtNa:Bl) =P

Then q(zg, Ty, - - -y Ten, 1) = D5 (X0, Tiyy .. -, Tty ,T1), i€, it is the
finite-dimensional projection of the Schrodinger Bridge £* to the considered times.
Moreover, its joint marginal g(zg,x1) at times ¢ = 0,1 is the solution to the static
SB problem between pg and py, i.e., q(xg, 1) = p* (xo, x1)

o Thus, to solve the static SB problem, it is enough to find a Markovian mixture of
discrete Brownian bridges

o We propose the Discrete-time Iterative Markovian Fitting (D-IMF) procedure



Discrete Reciprocal Projection

o Let g € Paqc(RP*(V+2)) be a discrete stochastic process
o The reciprocal projection projy(q) is a discrete stochastic process

[projr (9)] (0, @ty - - -, Ty, T1) = PV (@4, .., Ty |To, 21)q(20, T1)

o This projection takes the joint distribution of start and end points ¢(zg, 1) and
inserts the Brownian Bridge for intermediate time moments



Discrete Markovian Projection

o Let g € ’Pz,ac(RDX(N“)) be a discrete stochastic process

o The Markovian projection of ¢ is a discrete stochastic process
proj v (q) € Paac(RP*(V+2)) whose joint distribution is

N+1
[PVOJM(Q)] (Z0; Tty s - Ty, T1) = q(Z0) H q(zt,|zt, 4 )-

n=1




D-IMF procedure converges to the Schrodinger Bridge

o Let pg € Pz,ac(]RD) and p; € 'Pg,ac(]RD) be two distributions att =0and t =1
o D-IMF starts with any discrete mixture of Brownian bridges

PV (1, ... Tey |0, ©1)q(w0, 21), where q(xo,z1) € II(po, p1) N P2,ac(RP*?)
o lterations:

@ = projp(¢*), ¢*? = proj (g

o Theorem: The sequence ¢* converges in KL to p¢". In particular, ¢*(zg, 1)
convergence to the solution p& (g, 1) of the static SB:

lim KL (qupﬁ*) =0, and lim KL (ql(xo,xl)HpE* (a:o,:vl)) =0
=00 =00

2l+1)




ASBM vs. DSBM: Examples

Unpaired transfer (male—female) on Celeba 128x128 dataset using DSBM and ASBM (ours)

Before: After:
Long DSBM generation process (NFE=100) Fast ASBM (ours) generation process (NFE=4)




Comparison of approaches

Bridge Matching constructs a diffusion between py and p; by combining
reciprocal and Markovian projections of stochastic processes.
Reciprocal Projection.

Makes a mixture of Brownian bridges ’Wlfca .

pT(Xg,Xl) of stochastic process T at times t=0 and t=1.

with the distribution

The Brownian Bridge Wlifo 53 projr (T)= / Wi dp” (x0,x1)

Wiener process conditioned on xp, x1. u )
A X5, / pT(xllxo)

Y

X, Xy
N(xe|(1 — t)xo + tx1, t(1 — t)elp)

Markovian Projection.
Finds the diffusion T4 which is the most similar to a process T.

T = projp(T) -
dxe = gaq(xe, t)dt + VedWs,

EM (Xf! t} =

X1 — X
ammmjﬁdnm»~f—fw@ﬁmaa
£

Discrite Bridge Matching constructs a discrete markovian process be-
tween pg and p; by combining discrete reciprocal and discrete Markovian
projections of stochastic processes.

Discrete Reciprocal Projection.

Makes a mixture of Discrete Brownian bridges p"V* (x,, . .. s Xep | X0, x1)
with the distribution p(xp,x1) of discrete stochastic process g at times
t=0and t=1.

. €
projz (@) = P (xeys - -, Xey I¥0, X1)Q(%0, X1)

Discrete Brownian Bridge
pW . (xtls Xty 3 Xtz IXOs Xl)-

XO®X1

X X, X

Discrite Markovian Projection.
Finds the markovian discrete stochastic process paq which is the most
similar to a process q.

pM(XO)ths seey xl‘Ns Xl) =

[projM(Q)] (xOs xtl 3 eeey fos xl) -
N+1

dm)IIﬂnJth




Conclusions

1.

Schrodinger Bridge (and, more generally, diffusion bridge) framework allows to construct
diffusion processes between arbitrary data distributions (not just noise to data as in
classic score-based diffusion models)

The core of the framework is the bridge matching technique which is closely related to
the conventional score matching from diffusion models

Schrodinger Bridges yield state-of-the-art results in several image-to-image setups,
including image inverse problems (super-resolution, inpainting, etc.)

Schrodinger Bridges can be learned via adversarial techniques (ASBM, ours) which
notably speed up the inference time compared to the diffusion-based approaches
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