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Introduction

Embedding methods are commonly used to analyse time series whose full system state

cannot be fully or directly observed. One common class of embedding methods — time

delay embedding — requires the careful selection of embedding lags.

Figure 1. Scheme of attractor reconstruction with time delay embedding (TDSE) and principal

component analysis (PCA).

The dimension of the space is the length of a vector with previous values in time.

As the dimension of the phase space increases, the distances between the points of

the trajectory tend to the constant value.

The proper dimension is significantly less than the dimension of the original phase

space.

That makes distances uninformative and unstable due to the curse of dimensionality.

Also, it assumes that a more stable and robust model is possible in the subspace than in

the original one.

Key idea

To prevents the curse of dimensionality various method is used. The most common

method for such analysis is the principal component method (PCA). This is a linear

method. To extend it, it is proposed to use the tensor method for characterizing the

state of the multidimensional data.

The key idea is to expand dynamic systemmodel in addition to the time delay embedding

to multivariate time serise. Such model also prevents the loss of higher-order informa-

tion.

Proposed method

Let sx, sy, sz be the time series of acceleration along each of three axes. A signal from

each axis separately restores the attractor of the dynamic system according to Taken’s

theorem using time delay embedding. Also, there are linear maps between each vari-

able using rotation and stretching (i.e. affine transformations)

Sx = ITSx, Sx = W T
y Sy, Sx = W T

z Sz, (1)

where Sx, Sy, Sz are trajectory matrices in initial phase space, W T
y , W T

z are the trans-

formation matrices, I is an identity matrix. Thus, the multilinear model is modified as

follows:

xt = A ×1 (ITsx t) ×2 (W T
y sy t) ×3 (W T

z sz t) = Â ×1 sx t ×2 sy t ×3 sz t, (2)

where Â = A ×1 IT ×2 W T
y ×3 W T

z is modified dynamic tensor, sx t, sy t, sz t are state

variable vectors from each axis at time t.

The tensor Â allows to select not only the main components, as in case of PCA for

univariate time series, but filter them according to multilinear dependencieswith other

time series.

Experiment

This dataset includes time-series data generated by accelerometer and gyroscope sen-

sors. It is collected with an iPhone 6s kept in the participant’s front pocket using Sens-

ingKit. All data collected in 50Hz sample rate. A total of 24 participants in a various of

gender, age, weight, and height performed six activities in the same environment and

conditions: downstairs, upstairs, walking, jogging, sitting, and standing.

Figure 2. Time series sample, reconstruct phase space with PCA and TDS of activity upstairs

Thus, on several real time series it was shown that in the case of a linear dependence, the

proposed method allows to obtain more interpretable results and reduces the number of

intersections. In the case of clearly nonlinear dependences, the result becomes complex.

Conclusion/Future perspectives

This paper solves the problem of dimensionality reduction for the phase reconstruction

of multivariate time series. The result of the work is a generalization tensor dynamical

system in the case of multivariate time Proposed method retains the required properties

and reproduces the type of the original attractor with a high accuracy in linear case.

There are three main directions for future work:

to take into account nonlinear relationships through, for example, autoencoders and

nonlinear activation functions;

to increase computational efficiency with a more complex approach which will use

not all available components, but those with the highest correlation in the

multivariate time series;

to optimize the construction of the tensor representation due to the exponential

growth of the number of parameters in the case of a larger number of time series.
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