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The problem
We consider the decentralized optimization
problem with coupled constraints

min
x1∈Rd1,...,xn∈Rdn

n∑
i=1

fi(xi)

s.t.
n∑
i=1

(Aixi − bi) = 0

Decentralized Topology

Function fi, matrix Ai

and vector bi is a private
information stored on i-th
agent. Agents communi-
cate only with their immediate neighbours in
the communication network.
Our goal: obtain a linearly convergent first-
order algorithm

Applications
• Optimal exchange / Resource allo-
cation

min
x1,...,xn∈X

n∑
i=1

fi(xi) s.t.
n∑
i=1

xi = b,

where xi ∈ X represents the quantities of
commodities exchanged among the agents of
the system, and b ∈ X represents the shared
budget or demand for each commodity.
• Problems on graphs. In electrical mi-
crogrids, telecommunication networks, drone
swarms, etc, distributed systems are based
on physical networks. Electric power net-
work example: let xi ∈ R2 denote the volt-
age phase angle and the magnitude at i-th
electric node, let s be the vector of (active
and reactive) power flows for each pair of
adjacent electric nodes. Power flows can be
derived (with high accuracy) from bus volt-
ages using a linearization of Kirchhoff’s law∑n

i=1 Aixi = s.
•Consensus optimization. Widely used
in decentralized machine learning

min
x1,...,xn∈X

n∑
i=1

fi(xi) s.t. x1 = x2 = . . . = xn.

The consensus constraint can be reformu-
lated in a decentralized-friendly manner as∑n

i=1 Wixi = 0, where Wi is the i-th vertical
block of a gossip matrix (e.g., communication
graph’s Laplacian).
• Vertical federated learning (VFL).
Let F be the matrix of features, split verti-
cally (by features) between agents into sub-
matrices Fi.

min
z∈Y

x1∈Rd1,...,xn∈Rdn

`(z, l)+
n∑
i=1

ri(xi) s.t.
n∑
i=1

Fixi = z,

l is a vector of labels, xi is a subvector of
model parameters owned by the i-th node, `
is a loss function, ri are regularizers.

Assumptions
• All fi are µf -strongly convex and Lf -
smooth; κf := Lf

µf
.

• The constraints are compatible. There ex-
ist constants LA ≥ µA > 0, such that
the constraint matrices A1, . . . ,An satisfy
σ2

max(A) = maxi∈1...n σ
2
max(Ai) ≤ LA, and

µA ≤ λmin+ (S), where S = 1
n

∑n
i=1 AiA>i ;

κA := LA/µA.
•We are given a gossip matrixW , such that:

1. Wij 6= 0 if and only if agents i and j
are neighbours or i = j.

2. Wy = 0 if and only if y ∈ L1, i.e.
y1 = . . . = yn.

3. There exist constants LW ≥ µW > 0
such that µW ≤ λ2

min+(W ) and λ2
max(W ) ≤

LW; κW := λmax(W)
λmin+(W) =

√
LW
µW

.

Approach
Decentralized reformulation. Let A =
diag (A1, . . . , An), b = (b>1 , . . . , b>n )>, x =
(x>1 , . . . , x>n )>, W = W ⊗ Im. The original
constraint can be equivalently reformulated
as Ax + γWy = b, γ 6= 0. Matrix multipli-
cations in the reformulation can be performed
using single communication with neighbours.
Base algorithm. We use algorithm from
[1] (see also [2]), which was proposed for min-
imization of a smooth strongly convex func-
tion G(u) under affine constraint Ku = b′.
Algorithm 1: APAPC
1: ukg := τuk + (1− τ )ukf
2: uk+1

2 := (1 + ηα)−1(uk − η(∇G(ukg)−
αukg + zk))

3: zk+1 := zk + θK>(Kuk+1
2 − b′)

4: uk+1 := (1 + ηα)−1(uk − η(∇G(ukg)−
αukg + zk+1))

5: uk+1
f := ukg + 2τ

2−τ (u
k+1 − uk)

This first-order algorithm is based on the
Forward-Backward algorithm and Nesterov’s
acceleration.
Augmentation. In the decentralized re-
formulation we introduced the variable y,
making the objective a non-strongly con-
vex function of (x, y). To still obtain linear
convergence we add the augmentation term
G(x, y) =

∑
i fi(xi) + r

2‖Ax + γWy − b‖2.
With appropriate coefficients, G is smooth
and strongly convex enough.
Chebyshev’s acceleration. Our con-
straint matrix (A γW) consists of two ma-
trices, multiplications by which correspond to
different oracles. Therefore, we modify appli-
cation of Chebyshev’s acceleration from [1],
by replacing W with PW (W) first and then
applying Chebyshev’s acceleration to matrix
(A γPW (W)).

Results
Theorem (Algorithm)

For every ε > 0, the proposed algo-
rithm finds xk for which ‖xk − x∗‖2 ≤ ε
using O(√κf log(1/ε)) objective’s gradi-
ent computations, O(√κf

√
κA log(1/ε))

multiplications by A and A>, and
O(√κf

√
κA
√
κW log(1/ε)) communica-

tion rounds (multiplications by W).

Theorem (Lower bound)

For any Lf > µf > 0, κA, κW > 0 there
exist Lf -smooth µf -strongly convex func-
tions {fi}ni=1, matrices Ai such that κA =
LA/µA, and a communication graph G
with a corresponding gossip matrix W
such that κW = λmax(W)/λ+

min(W),
for which any first-order decentralized
algorithm to reach accuracy ε requires
at least NA = Ω

(√
κf
√
κA log

(
1
ε

))
multiplications by A and A> and
NW = Ω

(√
κf
√
κA
√
κW log

(
1
ε

))
com-

munication rounds (multiplications by
W).

The corresponding lower bound on gradient
computations is a classical result by Nesterov.

Experiments
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Synthetic VFL, Erdős–Rényi graph, n = 20, di = 3,
m = 10
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LibSVM VFL, Erdős–Rényi graph, n = 7, m = 100

Summary
The simple augmentation trick and utiliza-
tion of accelerated Forward-Backward algo-
rithm [2] allowed to overpass the strong con-
vexity issue and obtain an optimal first-order
algorithm. Transition to the dual problem
was not fruitful in this case.
The analysis is mostly linear algebra to de-
rive spectral properties of block-matrices. All
nasty inequalities stuff is hidden in the base
algorithm’s analysis.
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