Decentralized Optimization with Coupled Constraints

Demyan Yarmoshik ^{1, 2} Dmitry Kovalev ³ Alexander Rogozin ^{1, 4} Nikita Kiselev¹ Daniil Dorin¹ Alexander Gasnikov^{5,1,2} ¹ Moscow Institute of Physics and Technology ² Institute for Information Transmission Problems ³ Yandex ⁴ Skoltech ⁵ Innopolis University

The problem

We consider the decentralized optimization problem with coupled constraints

> $\min_{x_1 \in \mathbb{R}^{d_1}, \dots, x_n \in \mathbb{R}^{d_n}} \sum_{i=1} f_i(x_i)$ s.t. $\sum_{i=1}^{n} (\mathbf{A}_i x_i - b_i) = 0$

Function f_i , matrix \mathbf{A}_i and vector b_i is a private information stored on *i*-th agent. Agents communi- Decentralized Topology cate only with their immediate neighbours in the communication network.

Our goal: obtain a linearly convergent firstorder algorithm

Applications

• Optimal exchange / Resource allo-

Assumptions

- All f_i are μ_f -strongly convex and L_f smooth; $\kappa_f := \frac{L_f}{\mu_f}$.
- The constraints are compatible. There exist constants $L_{\mathbf{A}} \geq \mu_{\mathbf{A}} > 0$, such that the constraint matrices $\mathbf{A}_1, \ldots, \mathbf{A}_n$ satisfy $\sigma_{\max}^2(\mathbf{A}) = \max_{i \in 1...n} \sigma_{\max}^2(\mathbf{A}_i) \leq L_{\mathbf{A}}$, and $\mu_{\mathbf{A}} \leq \lambda_{\min^+}(\mathbf{S})$, where $\mathbf{S} = \frac{1}{n} \sum_{i=1}^n \mathbf{A}_i \mathbf{A}_i^{\dagger}$; $\kappa_{\mathbf{A}} := L_{\mathbf{A}}/\mu_{\mathbf{A}}.$

• We are given a gossip matrix W, such that: 1. $W_{ij} \neq 0$ if and only if agents i and j are neighbours or i = j.

2. Wy = 0 if and only if $y \in \mathcal{L}_1$, i.e. $y_1 = \ldots = y_n$.

3. There exist constants $L_{\mathbf{W}} \ge \mu_{\mathbf{W}} > 0$ such that $\mu_{\mathbf{W}} \leq \lambda_{\min^+}^2(W)$ and $\lambda_{\max}^2(W) \leq$ $L_{\mathbf{W}}; \, \kappa_{\mathbf{W}} := \frac{\lambda_{\max}(\mathbf{W})}{\lambda_{\min}+(\mathbf{W})} = \sqrt{\frac{L_{\mathbf{W}}}{\mu_{\mathbf{W}}}}.$

Approach

Results

Theorem (Algorithm) For every $\varepsilon > 0$, the proposed algorithm finds x^k for which $||x^k - x^*||^2 \leq \varepsilon$ using $O(\sqrt{\kappa_f} \log(1/\varepsilon))$ objective's gradient computations, $O(\sqrt{\kappa_f}\sqrt{\kappa_A}\log(1/\varepsilon))$ multiplications by A and A^{+} , and

 $O(\sqrt{\kappa_f}\sqrt{\kappa_A}\sqrt{\kappa_W}\log(1/\varepsilon))$ communica-

tion rounds (multiplications by \mathbf{W}).

Theorem (Lower bound)

For any $L_f > \mu_f > 0$, $\kappa_{\mathbf{A}}, \kappa_{\mathbf{W}} > 0$ there exist L_f -smooth μ_f -strongly convex functions $\{f_i\}_{i=1}^n$, matrices \mathbf{A}_i such that $\kappa_{\mathbf{A}} =$ $L_{\mathbf{A}}/\mu_{\mathbf{A}}$, and a communication graph \mathcal{G} with a corresponding gossip matrix \mathbf{W} such that $\kappa_{\mathbf{W}} = \lambda_{\max}(\mathbf{W})/\lambda_{\min}^+(\mathbf{W}),$ for which any first-order decentralized algorithm to reach accuracy ε requires at least $N_{\mathbf{A}} = \Omega\left(\sqrt{\kappa_f}\sqrt{\kappa_{\mathbf{A}}}\log\left(\frac{1}{c}\right)\right)$

cation

$$\min_{x_1,...,x_n \in X} \sum_{i=1}^n f_i(x_i) \quad \text{s.t.} \quad \sum_{i=1}^n x_i = b,$$

where $x_i \in X$ represents the quantities of commodities exchanged among the agents of the system, and $b \in X$ represents the shared budget or demand for each commodity.

• Problems on graphs. In electrical microgrids, telecommunication networks, drone swarms, etc, distributed systems are based on physical networks. Electric power network example: let $x_i \in \mathbb{R}^2$ denote the voltage phase angle and the magnitude at i-th electric node, let s be the vector of (active) and reactive) power flows for each pair of adjacent electric nodes. Power flows can be derived (with high accuracy) from bus voltages using a linearization of Kirchhoff's law $\sum_{i=1}^{n} \mathbf{A}_i x_i = s.$

• Consensus optimization. Widely used in decentralized machine learning

 $\min_{x_1,...,x_n \in X} \sum_{i=1}^{n} f_i(x_i) \quad \text{s.t.} \quad x_1 = x_2 = \ldots = x_n.$

The consensus constraint can be reformulated in a decentralized-friendly manner as

Decentralized reformulation. Let A =diag $(A_1, \ldots, A_n), \ \mathbf{b} = (b_1^{\top}, \ldots, b_n^{\top})^{\top}, \ x =$ $(x_1^{\top},\ldots,x_n^{\top})^{\top}, \mathbf{W}=W\otimes I_m$. The original constraint can be equivalently reformulated as $\mathbf{A}x + \gamma \mathbf{W}y = \mathbf{b}, \ \gamma \neq 0$. Matrix multiplications in the reformulation can be performed using single communication with neighbours. **Base algorithm.** We use algorithm from [1] (see also [2]), which was proposed for minimization of a smooth strongly convex function G(u) under affine constraint $\mathbf{K}u = \mathbf{b}'$. Algorithm 1: APAPC 1: $u_a^k := \tau u^k + (1 - \tau) u_f^k$ 2: $u^{k+\frac{1}{2}} := (1+\eta\alpha)^{-1}(u^k - \eta(\nabla G(u_q^k) \alpha u_a^k + z^k))$ 3: $z^{k+1} := z^k + \theta \mathbf{K}^\top (\mathbf{K} u^{k+\frac{1}{2}} - \mathbf{b'})$ 4: $u^{k+1} := (1 + \eta \alpha)^{-1} (u^k - \eta (\nabla G(u_a^k) - \eta (\nabla G(u_a^k))))$ $\alpha u_a^k + z^{k+1}))$ 5: $u_f^{k+1} := u_q^k + \frac{2\tau}{2-\tau}(u^{k+1} - u^k)$

This first-order algorithm is based on the Forward-Backward algorithm and Nesterov's acceleration.

Augmentation. In the decentralized reformulation we introduced the variable y, making the objective a *non*-strongly con-

multiplications by
$$\mathbf{A}$$
 and \mathbf{A}^{\top} and $N_{\mathbf{W}} = \Omega\left(\sqrt{\kappa_f}\sqrt{\kappa_{\mathbf{A}}}\sqrt{\kappa_{\mathbf{W}}}\log\left(\frac{1}{\varepsilon}\right)\right)$ communication rounds (multiplications by \mathbf{W}).

The corresponding lower bound on gradient computations is a classical result by Nesterov.

Experiments

Synthetic VFL, Erdős–Rényi graph, n = 20, $d_i = 3$, m = 10

LibSVM VFL, Erdős–Rényi graph, n = 7, m = 100

Summary

The simple augmentation trick and utilization of accelerated Forward-Backward algorithm [2] allowed to overpass the strong convexity issue and obtain an optimal first-order algorithm. Transition to the dual problem was not fruitful in this case. The analysis is mostly linear algebra to derive spectral properties of block-matrices. All nasty inequalities stuff is hidden in the base algorithm's analysis.

 $\sum_{i=1}^{n} \mathbf{W}_{i} x_{i} = 0$, where \mathbf{W}_{i} is the *i*-th vertical block of a gossip matrix (e.g., communication graph's Laplacian).

• Vertical federated learning (VFL). Let \mathbf{F} be the matrix of features, split vertically (by features) between agents into submatrices \mathbf{F}_i .

 $\min_{\substack{z \in Y \\ x_1 \in \mathbb{R}^{d_1}, \dots, x_n \in \mathbb{R}^{d_n}}} \ell(z, l) + \sum_{i=1}^n r_i(x_i) \text{ s.t.} \sum_{i=1}^n \mathbf{F}_i x_i = z,$

l is a vector of labels, x_i is a subvector of model parameters owned by the *i*-th node, ℓ is a loss function, r_i are regularizers.

vex function of (x, y). To still obtain linear convergence we add the augmentation term $G(x,y) = \sum_{i} f_i(x_i) + \frac{r}{2} \|\mathbf{A}x + \gamma \mathbf{W}y - \mathbf{b}\|^2.$ With appropriate coefficients, G is smooth and strongly convex enough. Chebyshev's acceleration. Our constraint matrix (A γ W) consists of two matrices, multiplications by which correspond to different oracles. Therefore, we modify application of Chebyshev's acceleration from [1], by replacing **W** with $P_W(\mathbf{W})$ first and then applying Chebyshev's acceleration to matrix $(\mathbf{A} \gamma P_W(\mathbf{W})).$

References

[1] Salim et al., An optimal algorithm for strongly convex minimization under affine constraints

[2] Kovalev et al, Optimal and practical algorithms for smooth and strongly convex decentralized optimization