Decentralized Optimization with Coupled Constraints
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The problem

We consider the decentralized optimization
problem with coupled constraints

Function f;, matrix A, % %
and vector b; is a private
information stored on ¢-th
agent.
cate only with their immediate neighbours in

L
Decentralized Topology

Agents communi-

the communication network.
Our goal: obtain a linearly convergent first-
order algorithm

Applications
e Optimal exchange / Resource allo-
cation

min
x1,-. ,anX

Zfl :CZ sz:ba
1=1

where x; € X represents the quantities of
commodities exchanged among the agents of
the system, and b € X represents the shared
budget or demand for each commodity:.

e Problems on graphs. In electrical mi-
crogrids, telecommunication networks, drone
swarms, etc, distributed systems are based
on physical networks. Electric power net-
work example: let x; € R? denote the volt-
age phase angle and the magnitude at ¢-th
electric node, let s be the vector of (active
and reactive) power flows for each pair of
adjacent electric nodes. Power flows can be
derived (with high accuracy) from bus volt-
ages using a linearization of Kirchhoft’s law
2?21 Azxz — S.

e Consensus optimization. Widely used
in decentralized machine learning

L1 — T =

The consensus constraint can be reformu-
lated in a decentralized-friendly manner as
>y W,x; = 0, where W; is the ¢-th vertical
block of a gossip matrix (e.g., communication
graph’s Laplacian).

e Vertical federated learning (VFL).
Let F be the matrix of features, split verti-
cally (by features) between agents into sub-
matrices F;.

{(z ri(x;) s.t. F,x;, =z,
1;%1}1/1 _|_Zz 1 Z )

(ElERd, T € Rdn
[ is a vector of labels, x; is a subvector of

model parameters owned by the 2-th node, ¢
is a loss function, r; are regularizers.

Assumptions

o All f; are ,uf -strongly convex and L-

smooth; k¢ := u_f

e The constraints are compatible. There ex-
ist constants Lo > ua > 0, such that
the constraint matrices Aq,..., A, satisty
02 (A) = maxjer 02, (A;) < La, and
pa < Apip+ (S), where S = %Z?:l A A/
KA ‘— LA/,uA.
e We are given a gossip matrix W', such that:
1. Wi; # 0 if and only if agents ¢ and j
are neighbours or ¢ = J.
2. Wy = 0if and only if y € Ly, i.e

Yy = ... = Yp.
3. There exist constants Lw > uw > 0

such that pw < A2, (W) and A7, (W) <
.  Amax(W) /L
Low; rw = Auint (W) o
Approach
Decentralized reformulation. Let A =
diag (A1,...,A,), b = (b),....,0)", = =
(z!,...,2))", W =W ® I,,,, The original

constraint can be equivalently reformulated
as Axz + YWy = b, v £ 0. Matrix multipli-
cations in the reformulation can be performed
using single communication with neighbours.
Base algorithm. We use algorithm from
1] (see also [2]), which was proposed for min-
imization of a smooth strongly convex func-
tion G(u) under affine constraint Ku = b’.

Algorithm 1: APAPC

.= Ty,

Loy = Tuf 4 (1 — 7)uf
0 s = (1 +na) "k — n(VG(ub) —
ozu]g“ + 2M))

3. 2= 2k KT (Kuft: — b)
4 uk“ = (14 na) (u" —n(VG(u}) —
k _|_ Zkﬂ))
. u];eﬂ . /g<+ 22__77(uk+1 _ uk)
This first-order algorithm is based on the
Forward-Backward algorithm and Nesterov’s

acceleration.

Augmentation. In the decentralized re-
formulation we introduced the variable v,
making the objective a mnon-strongly con-
vex function of (x,y). To still obtain linear
convergence we add the augmentation term
G(z,y) = ¥ filzi) + 5| Az + YWy — b|.
With appropriate coefficients, GG is smooth
and strongly convex enough.
Chebyshev’s acceleration.
straint matrix (A YW) consists of two ma-

Our con-

trices, multiplications by which correspond to
different oracles. Therefore, we modity appli-
cation of Chebyshev’s acceleration from |1,
by replacing W with Py (W) first and then
applying Chebyshev’s acceleration to matrix

(A Py (W)).
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Results

Theorem (Algorithm)

For every ¢ > 0, the proposed algo-
rithm finds 2" for which ||z — z*||* < ¢
using O(,/Kylog(1/€)) objective’s gradi-
ent computations, O(,/Ky/ka log(1/e))
multiplications by A and A', and

O(\/Fr\/Eay/Ewlog(l/g))  communica-

tion rounds (multiplications by W).

Theorem (Lower bound)

For any Ly > pur > 0, ka,kw > 0 there
exist L p-smooth g g-strongly convex func-
tions { f;}._;, matrices A; such that ka =
La/pa, and a communication graph G
with a Corresponding oossip matrix W

)/ Anin(W),

for which any first-order decentralized

such that kw =

max (

algorithm to reach accuracy e requires

at least Np = Q(\//Tf\/alog (%))

multiplications by A and A' and

Nw = Q(\/?f\//{A\//{Wlog (%)) Com-

munication rounds (multiplications by

W).

The corresponding lower bound on gradient
computations is a classical result by Nesterov.

Experiments
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Summary
The simple augmentation trick and utiliza-

tion of accelerated Forward-Backward algo-
rithm [2] allowed to overpass the strong con-
vexity issue and obtain an optimal first-order
algorithm. Transition to the dual problem
was not fruitful in this case.

The analysis is mostly linear algebra to de-
rive spectral properties of block-matrices. All
nasty inequalities stuff is hidden in the base
algorithm’s analysis.
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