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Contructing transparent boundary conditions problem

The scalar wave equation and Maxwell’s equations govern problems in such diverse ap-

plication areas as ultrasonics, seismics, underwater acoustics, antenna design, andmicro-

electronics. In many cases, the governing equations are posed as exterior problems, and

the infinite physical domain must be reduced to a finite computational domain through

the use of a nonreflecting boundary condition.

Example: wave propagation in infinite cylinder

As a certain example we will consider wave propagation in infinite circle channel with

radius r = a, Ω̃ = S1 × R. This process can be desribed as a wave equation

1
c2

∂2w
∂t2 = ∆w

where c - speed of sound in media, t is time, and ∆ - is Laplace operator.

To fix some parameters, we will set

w(r, ϕ, z, t) = 0, while t ≤ 0

and

α∂w
∂r + βw = 0, |α| + |β| 6= 0

Thus, we can conduct, that our problem is to find boundary conditions operator on artifi-

cial hyperplanes z = zL and z = zR, so solutions of differential problems in inner domain

ΩzL,zR
, that is obtained by artificial boundaries from Ω̃, and outer domain Ω̃\ΩzL,zR

.

Analytical solution for constructing TBC operator D, such that D[u] = 0 can be repre-

sented by next algorithm:

1. In outer domain consider Fourier decomposition of our function by eigen functions

ψk,n,m(r, ϕ) of Laplace operator in circle channel:

w(r, ϕ, z, t) =
∑∞

n=0
∑∞

k=1
∑2

m=1 ψk,n,m(r, ϕ)wk,n,m(z, t)
2. Then, after substituion of this form to inital equation, for each basis function we will

have:

1
c2

∂2wk,m,n

∂t2 = ∂2wk,m,n

∂z2 − λk,nwk,m,n

After some manipulation with coordinates we will obtain

ü = u′′ − u

3. For this equation we can apply Laplace transform (definition below):

L[f(t)](s) =
∫ ∞

0 e−stf(t)dt
And get ordinary differential equation of the form

U ′′ = (s2 + 1)U
4. Finish? Not yet. This equation we can rewrite as

U ′ = PU (∗)
P is an Poincare-Steklov operator. But why is it an operator? Because this equation

is written for every basis function. Remark : for some problems P has diagonal form.

Actually, for most problems analytical form of P can be calculated. So fair question is

- what’s next? Problem is literally solved. Yes, but it is solved in the space of Fouirer-

Laplace image, and before trying to solve this task in original space we need to evaluate

inverse transforms of equation (∗). Because of some techinal reasons, before applying

inverce Laplace transform we need to decompose operator P by degrees of variable s:

P (s) = P1s+ P0 +K(s)

For our example P (s) =
√
s2 + 1, and decomposition has form P (s) = s+K(s)

and asympthotics of K(s) = 1
s + o(1).

In the space of Laplace originals (s) must be represented as a sum of exponents, so

we will set K(s) = Pn−1(s)
Qn(s) , where P (s), Q(s) are polynomials with index corresponding

degrees.

Methodologies for constructing TBC

Classical numerical method (Pade approximation), based on Taylor decomposition.

Implementation can be found in Scipy, Matlab, Maple. Cons - slow and diverges

for some cases.

NeuralPade or vanilla MLP-based method.

End2end operator learning learning Fourier-Laplace image of Poincare-Steklov

convolution kernel operator.

Generative-based models for wave trajectories sampling.

NeuralPade

We will construct topology our neural network Fθ(s) based on classical MLP structure,

but with with resulting form as a rational function. Data for training - mesh on R, target

- analytical function values at dataset points. Pros - robust for any function, for simple

architechures are as fast as classical Pade method.

Resume

Thus, first of all we want our neural network Fθ(s) to approximate function F (s) =√
s2 + 1 − s meanwhile Fθ(s) must have form of rational approximation by input. We

will validate regression metrics on approximation of F (s) by Fθ(s) and approximation

error between inverce Laplace transforms L−1[F (s)](t) = J1(t)
t and L−1[Fθ(s)](t). We

will consider Chebyshev norm and MAE metric.

Number of poles C norm for Laplace images C norm for Laplace originals

10 0.25*1e-6 0.012

15 0.16*1e-6 0.05

25 0.09*1e-6 0.01

40 0.02*1e-7 0.0009

Table 1. NeuralPade results

End2end operator learning

End2end operator learning learning Fourier-Laplace image of Poincare-Steklov convolu-

tion kernel operator. We will step aside from classical algorithm and learn our function

to minimize parametrical operator loss function of the form:

∂u
∂t − c∂u

∂z +B ∗ u = 0

where B is convolution kernel, ∗ - is convolution operator.

So, our architechture will have to heads: first will approximate convolution kernel B,
second will simulate analytical TBC equation by prediction solutions uθ. So, our loss

function will have form:

Lop = λ1LTBC + λ2LLaplace

LTBC = ||∂uθ

∂t − c ∂θ

∂z +Bϕ ∗ uθ||

LLaplace = ||Bϕ(t) − F̃ (t)||

Where, Bϕ(s) =
∑N

p=1 ape
bpt

Wewill stack our dataset for uniform meshes with affine points x, and for approximation

target use basis functions from L2

Diffusion-based operator generation

Generative-based models for wave trajectories sampling. Consider a neighbourhood of

our artificial boudaries. We can consider wave propagation in image domain (motion-

based image/spectrogramm). Then via generative model (preferably diffusion) we can

learn latent distribution in this area, then convole it to function value (with encoder) in

certain point and evaluate function value/values. As a loss function we will use default

loss construction for diffusion model and weightned operator learning loss part.

So, our network we be represented by ordinary diffusion decoder sampler, learned by

minimization of the loss function below:

L = LDDPM + Lop = LDDPM + λ1LTBC + λ2LLaplace

Conclusion

In our poster we have presented an idea of transparent boundary conditions (TBC),

guided by analytical task from mathematical physics. List of approaches was pre-

sented, baseline results were declared. As a next steps preview main tasks were con-

sidered.
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