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Problem Definition and Contribution
Goal: Find an optimal sample such that it includes a minimum amount of information needed to solve an EEG signal classification problem robustly.
Key Contributions: A new approach to the classification of EEG signals.
• First, we reconstruct the probability density function of each class, taking the Riemannian Gaussian distribution of data into account [1].
• Second, we define a specific confidence interval for each class so that we can use it in our rejection strategy.
• Third, we solve the classification problem by evaluating the statistical significance of data concerning the classes’ distributions.

Formulation
Assumption: There is an optimal sample size that is enough to make a robust decision during the classification of signals.

1. Let D = {(Xi, yi)
L
i=1} be the given dataset, where a segment of EEG signals

Xi = [χ1, . . . ,χj , . . . ,χnC
]T,Xi ∈ RnC×nT and j ∈ J = {1, . . . , nC}.

2. Let Pi ∈ S++ be a Symmetric Positive Definite (SPD) matrix, where

Pi =
1

nT − 1
XiX

T
i

3. Let yi ∈ Y = {1, . . . ,K} be a class label.

4. Let p(y|P,w) be a parametric family, where w ∈ Rn.

5. The likelihood function is then as follows:

L (D,w) =

m∏
i=1

p (yi|Pi,w) , l (D,w) =

m∑
i=1

log p (yi|Pi,w)

Find:

ŵ = argmax
w∈Rn

L (D,w)

Criterion:

ROC AUC

Method
Sufficient Sample Size Estimation. Bootstrap:
Given some sample size m calculate the quantile confident intervals

(am1 , bm1 ) , (am2 , bm2 ) , . . . , (amn , bmn )

with the significance level of α using bootstrap for every parameter of the model.
Sufficient sample size m∗ : ∀m ≥ m∗ maxi (b

m
i − ami ) < l, where (ami , bmi ) is a quantile bootstrap confident interval calculated on the i-th bootstrap subset of the m

size [2].

Experiments & Results
Quantitative Results. ROC AUC vs Sample Size: Quantitative Results. ROC AUC Score Given 2500 Examples

in the Sample:
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