III-posed and inverse problems

- Various physical meaning and applications. Different type: differential or integral equations.
- A small change in the initial data leads to a significant change in the solution.
- Often ill-posed problems are inverse to well-posed and relatively easy-to-solve problems.
- The main idea is to replace condition f by condition q on another boundary.
- So we seek q making the well-posed problem equivalent to ill-posed.

Operator of the problem. Reduction to optimization

- Let $q: [0,1] \rightarrow \mathbb{R}$ be an element of functional Hilbert space H with usual scalar product.
- We define the operator $A: H \to H$, which associates the corresponding f to a known q.
- Calculation of Aq is a well-posed (direct) problem.
- Each ill-posed Cauchy problem under consideration is reduced to the operator equation Aq = f.
- $Aq^* = f \Rightarrow q^* = \arg\min_{q \in H} J(q)$. If $J(q^*) = 0$, q^* is the solution. Otherwise, solution does not exist.
- $J(q) = \frac{1}{2}||Aq f||^2$ is convex and smooth functional. Its gradient can be calculated by general formula: $\nabla J(q) = A^*(Aq - f)$, A^* is a conjugate operator, similar (sometimes equal) to A, can be found by the method of Lagrange's multipliers.

Optimization methods: classic

- Gradient descent: $q_{n+1} = q_n \alpha_n \nabla J(q_n)$. $J(q_n) = O(1/n)$. Step: constant; $\alpha_n = \frac{||\nabla J(q_n)||^2}{||A_0 \nabla J(q_n)||^2}$ (fastest descent); $\alpha_n = \frac{2J(q_n)}{||\nabla J(q_n)||^2}$ (nearest descent).
- Accelerated methods: $q_{n+1} = q_n \alpha_n \nabla J(q_n) + \beta_n (q_n q_{n-1})$. $J(q_n) = O(1/n^2)$. Conjugate Gradient Descent ($J(q_{n+1})$ is minimized on every step); Heavy Ball; STM.

New method: Conjugate Gradient Descent with minimization of distance to the exact solution

 $q_{n+1} = q_n - \alpha_n \nabla J(q_n) + \beta_n (q_n - q_{n-1}); \quad (\alpha_n, \beta_n) = \arg\min_{\alpha_n, \beta_n} ||q_{n+1} - q^*||^2.$

It can be rewritten:

$$s_n = -\nabla J(q_n) + \frac{\langle \nabla J(q_n), s_{n-1} \rangle}{||s_{n-1}||^2} s_{n-1}; \quad q_{n+1} = q_n + \frac{2J(q_n)}{||s_n||^2} s_n.$$

produced by this method are orthogonal: $\langle s_n, s_{n-1} \rangle = 0.$

- The nearby steps p
- q_n converges to q^* , and the distance decreases monotonically.
- The functional converges to 0, but not monotonically.
- The method is appropriate only for quadratic functions, but it's OK: J(q) is quadratic.
- $||q_{n+1} q^*||^2 \le \left(1 \frac{\mu}{L \sin^2 \varphi_n}\right) \cdot ||q_n q^*||^2$, where φ_n is angle between
- The method can be improved by using more steps in definition of s_n . The modification using all previous steps is the best first order method, but its computational complexity is $O(n^2)$, not O(n).

Results are submitted at arXiv.org: «On the modification of the conjugate gradient method with minimization of the distance to the exact solution when choosing the step length».

APPLICATION OF GRADIENT METHODS TO SOLVING ILL-POSED PROBLEMS OF MATHEMATICAL PHYSICS

Nikita V. Pletnev

Moscow Institute of Physics and Technology

$$-\nabla J(q_n)$$
 and $q_n - q_{n-1}$.

Retrospective Cauchy problem for heat equation: parabolic type

$$\begin{cases} u_t - \kappa^2(x, t)\Delta_x u = 0, & (x, t) \in \Omega = \Pi \times (0, 1) \\ u|_{x \in \partial \Pi} = 0 \text{ or } \frac{\partial u}{\partial \overline{n}}|_{x \in \partial \Pi} = 0, & t \in [0, 1] \\ u|_{t=1} = f(x), & x \in \Pi \end{cases}$$

$$\kappa(x, t), f(x) = (Aq^*)(x) \text{ are known continuous functions.}$$

$$(Aq)(x) = u(x, 1), \text{ where } q(x) \in C^2(\Pi), u(x, t) \text{ is solution} \\ \begin{cases} u_t - \kappa^2(x, t)\Delta_x u = 0, & (x, t) \in \Omega = \Pi \times (0, 1) \\ u|_{x \in \partial \Pi} = 0 \text{ or } \frac{\partial u}{\partial \overline{n}}|_{x \in \partial \Pi} = 0, & t \in [0, 1] \\ u|_{t=0} = q(x), & x \in \Pi \end{cases}$$

$$\kappa(x, t) \equiv const \Leftrightarrow A^* = A.$$

Experiments: boundary con on the value

 $f(x) = (Aq^*)(x)$, where $q^*(x) = \sin 2\pi x_1 \sin^2 2\pi x_2 \sin^3 2\pi x_3$, $\kappa(x,t) = \begin{cases} \kappa_{max}, & 0.4 < x_i < 0.6, \ i = 1, 2, 3\\ \frac{\kappa_{max}}{5}, & \text{otherwise} \end{cases}$

Achieved distance to minimum point (boundary conditions on (1, 2) (1, 0) (2, 1) (2, 1) (2, 1)

value), $\times 10^{-9}$. Initial distance: 0.242.					
κ_{max}	grad J	grad ρ	$\operatorname{conj} J$	conj $ ho$	
0.2	1.1757	1.1757	1.1757	1.1756	
0.4	3.67	3.66	3.67	1.36	
0.6	46.8	40.0	46.8	3.17	
0.8	-	96.7	-	6.95	
1.0	-	-	-	21.1	
1.2	-	-	-	47.6	

n of

Fredholm integral equation of the first kind

2024

$$\int_{0}^{1} K(x,s)q(s)ds = f(x), \ x \in [0,1]$$

K(x,s), $f(x) = (Aq^*)(x)$ are known continuous functions.

$$\begin{split} Aq)(x) &= \int\limits_{0}^{1} K(x,s)q(s)ds, \ x \in [0,1] \\ K(x,s) &= K(s,x) \Leftrightarrow A^* = A. \end{split}$$

Experiments

Symmetric kernel: conjugate gradient method with minimization of distance to the exact solution

 $K(x,s) = 1 + \sum \frac{1}{2^n} \sin \pi nx \sin \pi ns; q^*(x) = \sin \pi x + \sin 3\pi x.$

After quickly reaching the optimum (distance to the exact solution is $6.789 \cdot 10^{-14}$, functional value is $2.126 \cdot 10^{-32}$) on 53-th iteration the quality deteriorates.

Reconstruction of $q^*(x) = x$ for symmetric kernels: conjugate gradient method with minimization of functional

$1 + \sum_{n=1}^{10} \frac{1}{2^n} \sin \pi nx \sin \pi ns$	0.104	2.39 •
$1 + \sum_{n=1}^{10} \frac{1}{2^n} \cos \pi n(x-s)$	$6.79 \cdot 10^{-3}$	8.08 ·
$\sin \pi x s$	$1.52 \cdot 10^{-4}$	$3.54 \cdot$

Conclusions

- Conjugate gradient descent with minimization of the distance to the exact solution is quite simple and effective to solve inverse and ill-posed problems.
- Retrospective Cauchy problem for heat equation is as worse as κ is larger. New method can be used for $\kappa \leq 0.8$, unlike old methods (only for $\kappa \leq 0.5$).
- Integral equation is solved very good, but using of new method requires the stopping rule.

Function value, integral equation, $K = 1 + \sum_{n=1}^{\infty} \frac{1}{n} \sin n n x \sin n$ conjugate gradient (neares 800 600