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General Idea

This work solves the problem of mathematical modelling of sys-
tems with adaptive control. The system with artificial intelligence
corresponds to a discrete dynamic system, the behaviour of which
can be used to evaluate the original object. Link to full paper:
https://arxiv.org/abs/2405.02726
Problem Statement. We consider a set F of probability density
functions (PDFs), each of which describes the data available to a
machine learning system at a given time step t. We then introduce
a mapping Dt ∈ D that acts on a given PDF ft(x) ∈ F to produce
a new data distribution ft+1(x). A general model of the repeated
learning process we are studying can be written as

ft+1(x) = Dt(ft)(x) ∀x ∈ Rn, t ∈ N and Dt ∈ D. (1)
Examples of the repeated learning processes:

Figure: Two different experiments schemes. Sliding window update setup and
sampling update setup.

Setting

• All operators Dt ∈ D are transformations of the set F, that is, for
all f (x) ∈ F it holds that

Dt(f )(x) ≥ 0 for a.e. x ∈ Rn and
∫
Rn

Dt(f )(x)dx = 1.

• At each step t the operator Dt can be different, we only assume
that all Dt belong to some set D.
• The Dt operators are not always computable, i.e., we can only
observe samples from the distribution generated by the probability
density function ft+1(x)

Main Contributions

• We construct a mathematical model of the effect of feedback loops
using discrete dynamical systems.
• We obtain results for finding the limit set of the dynamical system,
sufficient conditions for the existence of a feedback loop and the
autonomy criterion.
• We developed a bench of computational experiments simulating
the process of repeated machine learning.

Related Work

Dynamical Systems. An important concept in the theory of dy-
namical systems is the so called minimal set. Since the set of density
functions is compact in the ∥ · ∥1-norm (if the discrete distributions
are included there), the considered dynamical system must have at
least one minimal set, since it is positively Lagrangian stable. In this
paper we find the set of so called ω limit points for the considered
system, which includes the minimal set.

Iterated Maps. An area in which the consistent application of
different functions is considered is iterated map. The main object of
study in this area is compressive mappings, which can be used to
find fixed points. However, the restriction that Dt operators are not
always computable makes it unfeasible to apply this theory for our
problem.
Markov Decision Process. In this area authors consider such
objects as Markov kernel, stationary distribution of the Markov
chain, time-independent transition matrices. However, the same
problems as when considering dynamical systems and iterated maps
arise in this subject, since for example, for finding a stationary
distribution, ability to computing the Markov kernel is necessary.
Feedback Loop. When there is a high automation bias, that is,
when the use of predictions is high and adherence to them is tight, a
so-called positive feedback loop occurs. As a result of the loop, the
learning algorithm is repeatedly applied to the data containing
previous predictions. This repeated learning produces a noticeable
unintended shift in the distributions of the input data and the
predictions of the system. For example, in systems that recommend
products to consumers or forecast market prices and learn from user
responses, healthcare decision support systems, and predictive
policing and public safety systems that introduce bias in the training
data as a result of an unintended feedback loop.

Results for a General System

Theorem 1 (Limit set)

Consider that Dt is a transformation of the set F for all t ∈ N
and for any probability density function f0(x), x ∈ Rn and dis-
crete dynamical system (1), if there exists a measurable function
g(x) from L1 (Rn) and a non-negative sequence ψt ≥ 0 such that
ft (x) := D1,t(f0) ≤ ψnt · |g(ψt · x)| for all t ∈ N and x ∈ Rn.
• Then, if ψt diverges to infinity, the density ft(x) tends to Dirac’s
delta function, ft(x) −→

t→+∞
δ(x) weakly.

• If ψt converges to zero, then the density ft(x) tends to a zero
distribution, ft(x) −→

t→+∞
ζ(x) weakly.

For the regression problem when the data have the form {(xi,yi)}Ni=1
Theorem 1 is stated not for the data in the AI system, but for a
random vector of model h residuals of the form y − h(x).

Analysis of Results from Theorem 1

From Theorem 1 we can presume that envelopes of our mappings
D1,t are in the form

D1,t(f0)(x) = ψnt · f0(ψt · x) ∀x ∈ Rn and ∀t ∈ N. (2)
When ψt converges to a constant c ∈ (0,+∞), then according to
equation (2) the distribution of our data remains the same, that is
the mapping D1,t is an identity mapping after some time step in the
process.
If we substitute x = 0 into the equation (2), then we can get an
expression for ψt: ψt = n

√
ft(0)/g(0). Let us take κ > 0 and consider

an integral of the form

Jt :=
∫

Bn(κ)

ft(x)dx =
∫

Bn(κ)

ψnt · f0(ψt · x)dx =
∫

Bn(κ·ψt)

f0(y)dy,

If ψt diverges to infinity, then Jt converges to ∥f0∥1 = 1, and if
ψt converges to zero, then Jt will also converge to zero. In the
experiments we measure ψt ∼= ft(0) and Jt ≈ F̂t(κ) − F̂t(−κ),
where κ > 0 is sufficiently small.

Corollaries of Theorem 1

Corollary 1 (Convergence rate)

For any q ≥ 1, under conditions of Theorem 1, if g(x) ∈ Lq (Rn)
and ψt converges to zero, it holds that

∥ft(x) − ζ(x)∥q ≤ (ψnt )1−1/q · ∥g∥q.

Corollary 2 (Decreasing moments)

If a system (1) with n = 1 satisfies the conditions of Theorem 1
and ψt diverges to infinity, then for all k ∈ N it holds that

Eξ∼ft(x)
[
ξ2k

]
≤ ψ−2k

t · Eξ∼f0(x)
[
ξ2k

]
.

Results for an Autonomous System

Theorem 2 (Autonomy criterion)

If the evolution operators Dt of a dynamic system (1) have the
form (2), then the system is autonomous if and only if

ψτ+κ = ψτ · ψκ ∀τ, κ ∈ N. (3)

This criterion is easy to check in practice, since the condition (3)
means that the sequence ψt is a power sequence, that is ψt = at for
some a > 0. An example of a mapping of the form (2) is given in
this work with the name Sampling update setup.

Limit to Delta Function or Zero Distribution

Figure: Counting ft(0) and
∫ κ

−κ ft(x)dx for sampling update setup. We consider
such parameters: usage, adherence = 1, 0 (first); 0.1, 0.9 (second); 1, 3 (third).

As we can see, if usage p = 1 and adherence s = 0, the limiting
probability density of D1,t(f0), that is the probability density of y −
h(x), is delta function δ(x).
When usage p = 0.1 and adherence s = 0.9, the probability density
of y − h(x) remains almost the same, that is ψt → c ∈ (0; +∞).
If usage p = 1 and adherence s = 3 we observe a tendency to the
zero distribution ζ(x).

Figure: Change in the standard deviation of the model error for different usage
and adherence. Sliding window setup (left), sampling update setup (right).
The graph is almost everywhere either red or blue, hence Theorem 1
is applicable in practice.

Autonomy Check

Figure: Testing two designs for autonomy. Sampling update setup (first and
second) and sliding window setup (third).
As you can see, in case of the sliding window update we obtain a poor
fit on all models and data sets, so the system is not autonomous.
The sampling update setup in case of usage p = 1 and adherence
s = 3 is autonomous on all models and data sets, since there is a
good fit. In case of usage p = 1 and adherence s = 0 we observe
two linear segments.

Decreasing Moments

Figure: Measurement νtk for k = 1, 2, 3, 4 and 5 for sampling update setup.
As we can see from the measurements, claim of Corollary 2 is satis-
fied in all observed cases. When usage p = 1 and adherence s = 0
the limit of mappings D1,t(f0), and correspondingly of y − h(x), is
the delta function δ(x).


