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Stochastic minimization problem

▶ Consider the strongly convex minimization problem, which admits a
unique solution θ⋆

f (θ) → min
θ∈Rd

. (1)

▶ The access to ∇f (θ) is available only through the (unbiased) noisy
observations ∇F (θ, ξ), where ξ is a random variable on (Z,Z).

▶ We solve the problem (1) using the SGD with constant step size γ,
starting from initial distribution ν:

θ
(γ)
k+1 = θ

(γ)
k − γ∇F (θ

(γ)
k , ξk+1) , θ0 ∼ ν, (2)

where ξk is a sequence of i.i.d. random variables.

▶ Define noise function as

εk(θ) = ∇F (θ, ξk)−∇f (θ) , (3)

and noise covariance matrix as Σ⋆
ε = E[∇F (θ⋆, ξ)⊗2]
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Polyak-Ruppert averaged estimator

Consider the Polyak-Ruppert averaged estimator

θ̄(γ)n =
1

n

2n∑
k=n+1

θ
(γ)
k . (4)

▶ Under appropriate assumptions on f and γk ,

√
n(θ̄n0,n − θ⋆)

d→ N(0,H−1Σ⋆
εH

−1) , n → ∞, (5)

where H = ∇2f (θ⋆); e.g. Fort [2015]).

▶ We examine the mean-squared error bounds in the following form:

E1/2[∥θ̄n0,n − θ⋆∥2] ≤
√
TrH−1Σ⋆

εH
−1

n1/2
+

C (f , d)

n1/2+δ
+ . . . (6)

▶ The goal of the work is to obtain the result in the form (6) with the
best possible constant δ.
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Related works: Polyak-Ruppert averaged estimator

▶ Previous studies considered decreasing step size in the dynamics (2):
▶ In Moulines and Bach [2011] for strongly convex functions it was

shown that

E1/2[∥θ̄n − θ∗∥2] ≲
√

Tr (H−1Σ⋆
εH−1)√

n
+O(n−7/12)

.
▶ Gadat and Panloup [2023] improved the result of Moulines and Bach

[2011] and for a certain class of functions f , including strongly convex
functions it was shown that

E1/2[∥θ̄n − θ∗∥2] ≲
√

Tr (H−1Σ⋆
εH−1)√

n
+O(n−5/8)

.
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Analysis of SGD: Assumptions on function f

Assumption A1

The function f is µ-strongly convex on Rd , that is, it is continuously
differentiable and there exists a constant µ > 0, such that for any
θ, θ′ ∈ Rd , it holds that

µ

2
∥θ − θ′∥2 ≤ f (θ)− f (θ′)− ⟨∇f (θ′), θ − θ′⟩ . (7)

Assumption A2

The function f is 4 times continuously differentiable and L2-smooth on
Rd , i.e., it is continuously differentiable and there is a constant L2 > 0,
such that for any θ, θ′ ∈ Rd ,

∥∇f (θ)−∇f (θ′)∥ ≤ L2 ∥θ − θ′∥ . (8)

Moreover, f has uniformly bounded 3-rd and 4-th derivatives, such that

∥∇i f (θ)∥ ≤ Li , for i ∈ {3, 4} . (9)
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Analysis of SGD: Assumptions on the noisy gradient ∇F

Assumption A3(p)

{ξk}k∈N is a sequence of independent and identically distributed (i.i.d.)
random variables with distribution Pξ, such that ξi and θ0 are
independent and for any θ ∈ Rd it holds that

Eξ∼Pξ
[∇F (θ, ξ)] = ∇f (θ) .

Moreover, there exists τp, such that E1/p[∥∇F (θ⋆, ξ)∥p] ≤ τp, and for
any q = 2, . . . , p it holds with some L1 > 0 that for any θ1, θ2 ∈ Rd ,

Lq−1
1 ∥θ1 − θ2∥q−2⟨∇f (θ1)−∇f (θ2), θ1 − θ2⟩

≥ Eξ∼Pξ
[∥∇F (θ1, ξ)−∇F (θ2, ξ)∥q] . (10)

Note that, A3(p) generalizes the well-known L1-co-coercivity assumption,
see Dieuleveut et al. [2020b]. A sufficient condition is to assume that
F (θ, ξ) is Pξ-a.s. convex with respect to θ ∈ Rd .
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Kantorovich - Wasserstein distance

Definition

The function c : Z× Z → R+ is called distance-like if it is symmetric,
lower semi-continuous and c(x , y) = 0 if and only if x = y .

Definition

For two probability measures ξ and ξ′ we denote by C (ξ, ξ′) the set of
couplings of two probability measures, that is, for any C ∈ C (ξ, ξ′) and
any A ∈ Z it holds C(Z× A) = ξ′(A) and C(A× Z) = ξ(A). We define

Wc(ξ, ξ
′) = inf

C∈C (ξ,ξ′)

∫
Z×Z

c(z , z ′)C(dz ,dz ′) . (11)
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Analysis of SGD: Bias
▶ Under assumptions A1-A3(2) the sequence {θ(γ)k }k∈N is a homogeneous

Markov chain with the Markov kernel

Qγ(θ,A) =

∫
Rd

1A(θ − γ∇F (θ, z))Pξ(dz) , θ ∈ Rd , A ∈ B(Rd) ; (12)

see Dieuleveut et al. [2020a].

▶ Introduce distance-like function

c(θ, θ′) = ∥θ − θ′∥(∥θ − θ∗∥+ ∥θ′ − θ∗∥+ c0γ
1/2) , (13)

where we set c0 = 23/2τ2/µ
1/2

Lemma 1

Assume A1-A3(2). Then, for any γ ∈ (0; 1
2L
] the Markov kernel Qγ admits a

unique invariant probability measure πγ . Moreover, for all θ ∈ Rd and k ∈ N

Wc(νQ
k
γ , πγ) ≤ 4(1/2)k/m(γ)Wc(ν, πγ), where m(γ) = ⌈2 log 4

γµ
⌉ (14)

▶ However, unless the function f is quadratic,

Eπγ [θ] ̸= θ⋆ .
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Analysis of SGD: Bias

▶ We consider the following condition.

Assumption C1(p)

There exist constants Dlast,p,Cstep,p ≥ 2 depending only on p, such that for any
step size γ ∈ (0, 1/(L Cstep,p)], and any initial distribution ν it holds that

E
2/p
ν

[
∥θ(γ)k − θ⋆∥p

]
≤ (1− γµ)kE

2/p
ν

[
∥θ0 − θ⋆∥p

]
+Dlast,pγτ

2
p /µ . (15)

Moreover, for the stationary distribution πγ it holds that

E2/p
πγ

[
∥θ(γ)0 − θ⋆∥p

]
≤ Dlast,pγτ

2
p /µ . (16)

▶ It is important to recognize that C1(p) is not independent from the
previous assumptions A1-A3(p). In particular, [Dieuleveut et al., 2020a,
Lemma 13] implies that, under A1-A3(p) with p ≥ 2, the bound (16) holds
for γ ∈ (0, 1/(L Cstep,p)] with some constants Dlast,p and Cstep,p, which
depends only upon p.
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Analysis of SGD: Bias

Proposition 2, Theorem 4 in Dieuleveut et al. [2020a]

A1-A3(6), C1(6). Then, for any γ ∈ (0, 1/(L Cstep,6)], the following bias
expansion holds:

Eπγ [θ] :=

∫
Rd

uπγ(du) = θ⋆ + γ∆1 +O(γ3/2) , (17)

Eπγ
[(θ − θ⋆)⊗2] :=

∫
Rd

(u − θ⋆)⊗2πγ(du) = γ∆2 +O(γ3/2) , (18)

where ∆1 ∈ Rd ,∆2 ∈ Rd×d are constants independent of the step size γ.
Moreover, for any starting point θ0 ∈ Rd , it holds that

E[θ̄n] = θ⋆ + γ∆1 +O(γ3/2) + ∆1(∥θ0 − θ⋆∥, γ, n) , (19)

where ∥∆1(∥θ0 − θ⋆∥, γ, n)∥ ≤ e−γµ(n+1)/2

nγµ (∥θ0 − θ⋆∥+
√
2γτ2√
µ ).
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Bound for Polyak-Ruppert averaged estimator

Theorem 3

Assume A1-A3(6), C1(6). Then for any γ ∈ (0, 1/(L Cstep,6)] and any
n ∈ N, the sequence of Polyak-Ruppert estimates (4) satisfies

E1/2
ν [∥H(θ̄(γ)n −θ⋆)∥2] ≲

√
TrΣ⋆

ε

n1/2
+

1

γ1/2n
+γ+

γ1/2

n1/2
+R1(n, γ, ∥θ0−θ⋆∥) ,

(20)
where
R1(n, γ, ∥θ0 − θ⋆∥) ≲ e−γµ(n+1)/2

γn (E
1/2
ν

[
∥θ0 − θ⋆∥2

]
+ E

1/2
ν

[
∥θ0 − θ⋆∥4

]
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Theorem 3: sketch of proof

▶ Note that

θk+1 − θ⋆ = θk − θ⋆ − γ
(
∇f (θk) + εk+1(θk)

)
,

where εk+1(θk) is a martingale-difference sequence w.r.t. Fk .

▶ Set
η(θ) = ∇f (θ)− H(θ − θ⋆) ,

▶ We get

θk+1 − θ⋆ = (I− γH)(θk − θ⋆)− γεk+1(θk)− γη(θk) ,

▶ Rearranging the terms, we obtain

H(θk − θ⋆) =
θk − θk+1

γ
− εk+1(θk)− η(θk) . (21)
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Theorem 3: sketch of proof
▶ Summing the recurrence (21), we obtain that

H(θ̄n − θ⋆) =
θn+1 − θ⋆

γn
−

θ2n − θ⋆

γn
−

1

n

2n∑
k=n+1

{εk+1(θk )− εk+1(θ
⋆)}

+
1

n

2n∑
k=n+1

εk+1(θ
⋆)−

1

n

2n∑
k=n+1

η(θk ) .

(22)

▶ Applying the 3-rd order Taylor expansion with integral remainder, we get that

η(θk ) = ∇f (θk )− H(θk − θ⋆) =
1

2

(∫ 1

0
∇3f (tθ⋆ + (1− t)θk ) dt

)
(θk − θ⋆)⊗2.

▶ Using A2, we thus obtain that

∥η(θk )∥ ≤
1

2
L3∥θk − θ⋆∥2 .

▶ Hence, applying Minkowski’s inequality, we get

E
1/2
ν [∥H(θ̄n − θ⋆)∥2] ≤

E
1/2
ν [∥θn+1 − θ⋆∥2]

γn
+

E
1/2
ν [∥θ2n − θ⋆∥2]

γn

+
1

n
E
1/2
ν [∥

2n∑
k=n+1

εk+1(θk )− εk+1(θ
⋆)∥2] +

1

n
E
1/2
ν [∥

2n∑
k=n+1

εk+1(θ
⋆)∥2]

+
L3

2n

2n∑
k=n+1

E
1/2
ν [∥θk − θ⋆∥4]
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Theorem 3: sketch of proof

▶ We have

Eν [∥
2n∑

k=n+1

εk+1(θk)− εk+1(θ
⋆)∥2] =

2n∑
k=n+1

{Eν [∥εk+1(θk)− εk+1(θ
⋆)∥2]

▶ Since ξk are i.i.d, we have

E1/2
ν [∥

2n∑
k=n+1

εk+1(θ
⋆)∥2] =

√
nTrΣ⋆

ε (23)

▶ Using A3, we get

Eν [∥εk+1(θk)− εk+1(θ
⋆)∥2] ≤ L2Eν [∥θk − θ⋆∥2]. (24)

▶ Applying C1[4], we complete the proof.
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Theorem 3: Discussion

▶ Setting optimal step size γ depending on the number of samples n,
we arrive at γ ≈ n−2/3, which yields an error bound of order:

E1/2
ν [∥H(θ̄n−θ⋆)∥2] ≲

√
TrΣ⋆

ε

n1/2
+O

(
1

n2/3

)
+R1(∥θ0−θ⋆∥, n) . (25)

▶ There are different results in the literature that provide various decay
rates of the second-order term in (25). However, all these results are
known to be suboptimal for the first-order methods.

▶ In fact, the recent result of Li et al. [2022] shows that a second-order
error can be achieved by modifying the SGD algorithm with averaging
and control variates

E1/2[∥H(θ̄n−θ⋆)∥2] ≲
√
TrΣ⋆

ε

n1/2
+O

(
1

n3/4

)
+R ′

1(∥θ0−θ⋆∥, n) . (26)

▶ Our goal is to obtain an analogue of the 2-moment bound (26), using
a simpler algorithm.
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Richardson-Romberg estimator

▶ We construct two parallel chains based on the same sequence of noise
variables {ξk}k∈N:

θ
(γ)
k+1 = θ

(γ)
k − γ∇F (θ

(γ)
k , ξk+1) , θ̄

(γ)
n = 1

n

∑2n
k=n+1 θ

(γ)
k ,

θ
(2γ)
k+1 = θ

(2γ)
k − 2γ∇F (θ

(2γ)
k , ξk+1) , θ̄

(2γ)
n = 1

n

∑2n
k=n+1 θ

(2γ)
k .

(27)

▶ Based on θ̄
(γ)
n and θ̄

(2γ)
n defined above, we construct a

Richardson-Romberg estimator as

θ̄(RR)
n := 2θ̄(γ)n − θ̄(2γ)n . (28)

▶ Note that in the decomposition (22), the linear statistics

W = n−1
∑2n

k=n+1 εk+1(θ
⋆) does not depend upon γ. Hence, using

the same sequence {ξk}k∈N of noise variables in (27) yields an

estimator θ̄
(RR)
n , such that its leading component of the variance still

equals W .
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Richardson-Romberg estimator: Bias

Proposition 4

Assume A1-A3(6), C1(6). Then, for any γ ∈ (0, 1/(L Cstep,6)], and any
starting point θ0 ∈ Rd , it holds that

Eν [θ̄
(RR)
n ] = θ⋆ +O(γ3/2) + ∆2(∥θ0 − θ⋆∥, γ, n) , (29)

where ∥∆2(∥θ0 − θ⋆∥, γ, n)∥ ≤ 3 e−γµ(n+1)/2

nγµ (E
1/2
ν [∥θ0 − θ⋆∥2] +

√
2γτ2√
µ ).
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Bound for Richardson-Romberg estimator

Theorem 5

Assume A1-A4(6). Then for any γ ∈ (0;min( 1
9L ,

1
C3L

)] and any n ∈ N,
the estimator defined in 28 satisfies

E1/2
ν [∥H(θ̄(RR)

n − θ⋆)∥2] ≲
√
TrΣ⋆

ε

n1/2
+
γ1/2

n1/2
+

1

γ1/2n
+

γ

n1/2
+ γ3/2

+ R2(n, γ, ∥θ − θ⋆∥),

where

R2(n, γ, ∥θ0 − θ⋆∥) ≲ e−γµ(n+1)/2

γn

(
E1/2

ν [∥θ0 − θ⋆∥2]

+ E1/2
ν [∥θ0 − θ⋆∥4] + E1/2

ν [∥θ0 − θ⋆∥6] + γ
)
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Theorem 5: sketch of proof
▶ Using the recursion 21, we obtain that

H(θ̄(RR)
n − θ⋆) = 2

θγn+1 − θ⋆

γn
− 2

θγ2n − θ⋆

γn
−
θ2γn+1 − θ⋆

2γn
+
θ2γ2n − θ⋆

2γn

− 2

n

2n∑
k=n+1

[εk+1(θ
γ
k )− εk+1(θ

⋆)] +
1

n

2n∑
k=n+1

[εk+1(θ
2γ
k )− εk+1(θ

⋆)]

+
1

n

2n∑
k=n+1

[εk+1(θ
⋆)]− 1

n

2n∑
k=n+1

[2η(θγk )− η(θ2γk )]

▶ Define the function ψ(θ) = (1/2)∇3f (θ∗)(θ − θ⋆)⊗2

▶ Applying the 4-rd order Taylor expansion with integral remainder, we
get that

η(θ) = ψ(θ) +
1

6

(∫ 1

0

∇4f (tθ⋆ + (1− t)θ) dt

)
(θ − θ⋆)⊗3 , (30)

▶ Using A2, we obtain

∥1
6

(∫ 1

0

∇4f (tθ⋆ + (1− t)θ) dt

)
(θ− θ⋆)⊗3∥ ≤ 1

6
L4∥θ− θ⋆∥3. (31)
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Theorem 5: sketch of proof
▶ The key technical element of the proof is to bound

1

n
E1/2
ν [∥

2n∑
k=n+1

{ψ(θk)− πγ(ψ)}∥2]

▶ Using coupling technique, it can be shown that

1

n
E1/2[∥

2n∑
k=n+1

{ψ(θk)− πγ(ψ)}∥2] ≲
1

n
E1/2
πγ

[∥
2n∑

k=n+1

{ψ(θk)− πγ(ψ)}∥2]

+
e−γµ(n+1)/2

γn
(E1/2

ν [∥θ0 − θ⋆∥4] + γ)

▶ It can be shown that for any θ, θ′ ∈ Rd , it holds that

∥ψ(θ)− ψ(θ′)∥ ≤ 1

2
L3c(θ, θ

′). (32)

▶ Moreover, see Douc et al. [2018], for any start point θ0 ∈ Rd , it holds

|Qkψ(θ0)− πγ(ψ)| ≲ L3(1/2)
k/m(γ)Wc(δθ0 , πγ).

21 / 28



Theorem 5: sketch of proof

▶ For covariance term, we get

Eπγ [(ψ(θ0)− πγ(ψ))
T (ψ(θk)− πγ(ψ))] ≲ (1/2)k/m(γ)γ2

▶ For variance term, we have

Eπγ
[∥ψ(θ0)− πγ(ψ)∥2] ≤ Eπγ

[∥ψ(θ0)∥2] ≲ γ2

▶ Combining results, we obtain

1

n
E1/2
πγ

[∥
2n∑

k=n+1

{ψ(θk)− πγ(ψ)}∥2] ≲
γ

n1/2
+
γ1/2

n1/2

▶ It remains to note that from Proposition 2 ∥2πγ(ψ)− π2γ(ψ)∥ ≲ γ3/2

▶ To obtain result of Theorem 5 it remains to apply Minkowski’s
inequality to the decomposition 30.
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Theorem 5: Discussion

▶ Setting optimal step size γ depending on the number of samples n,
we arrive at γ ≈ n−1/2, which yields an error bound of order:

E1/2
ν [∥H(θ̄RRn − θ⋆)∥2] ≲

√
TrΣ⋆

ε

n1/2
+O

(
1

n3/4

)
+ R2(∥θ0 − θ⋆∥, n) .

▶ Now we aim to generalize this result for the p-th moment bounds
with p ≥ 2.
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Richardson-Romberg estimator, p-th moment

▶ The key technical element of our proof for the p-th moment bound is
the following statement, which can be viewed as a version of
Rosenthal’s inequality [Rosenthal, 1970, Pinelis, 1994].

Proposition 6

Let p ≥ 2 and assume A1-A3(2p), and C1(2p). Then for any
γ ∈ (0, 1/(L Cstep,2p)], it holds that

E
1/p
πγ

[
∥
∑n−1

k=0{ψ(θ
(γ)
k )− πγ(ψ)∥p

]
≲

LDlast,2ppτ
2
2p

√
nγ

µ3/2
+

LDlast,2pτ2p
µ2

,

where ψ(θ) = (1/2)∇3f (θ∗)(θ − θ⋆)⊗2.
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Richardson-Romberg estimator, p-th moment

Repeating the proof of Theorem 5, and using Proposition 6, we obtain
the following bound:

Theorem 7

Let p ≥ 2 and assume A1-A3(3p) and C1(3p). Then for any
γ ∈ (0, 1/(L Cstep,3p)] and any n ∈ N, the estimator defined in 28 satisfies

E1/p
ν [∥H(θ̄(RR)

n − θ⋆)∥p] ≲
√
TrΣ⋆

ε

n1/2p1/2
+

1

n1−1/p
+
γ1/2

n1/2
+

1

γ1/2n

+
γ

n1/2
+ γ3/2 + R3(n, γ, ∥θ − θ⋆∥),

where

R3(n, γ, ∥θ0 − θ⋆∥) ≲ e−γµ(n+1)/2

γn

(
E1/p
ν [∥θ0 − θ⋆∥p]

+ E1/p
ν [∥θ0 − θ⋆∥2p] + E1/p

ν [∥θ0 − θ⋆∥3p] + γ
)
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Theorem 7: Discussion

▶ Setting optimal step size γ depending on the number of samples n,
we arrive at γ ≈ n−1/2, which yields an error bound of order:

E1/p
ν [∥H(θ̄RRn −θ⋆)∥p] ≲

√
TrΣ⋆

εp
1/2

n1/2
+O

(
1

n3/4

)
+R3(∥θ0−θ⋆∥, n) .
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Thank you!
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