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Introduction Problem statement DVPL-Katyusha

To address the problem of the time-consuming process of function minimization, We state the standard distributed learning problem, which, formally, can be written In DVPL-Katyusha every worker has its own set of features. Therefore, unlike the
the community came to distributed algorithms, where the calculation process is in the following form. ] ) horizontal regime, in the vertical case all operations are performed on subvectors,
divided among different devices. Such parallel computation can be used in situa- o | (@) ] — £(x) corresponding to individual worker's components.
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tions, where data is distributed across nggral machmes, as in the case of federated LeRd n 4= ! Algorithm 2 DVPL-Katyusha
learning approach. The latter can be divided into two different regimes. One of - - - Parameters: 0;,05,7 € (0, 1], probability p € (0, 1], RandK select j-th sample with probability
these is horizontal federated learning, where each worker possesses their own We assume functions to have the following properties. pj = 5t (every worker has the same random seed for I‘ﬂﬂdml;- connected Wlthpaléd pj)-
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collection of samples, but share the same set of features. A different way of data Initialization: Choose §° = u® = 2* € RY, stepsize 1 = iy, set L = max{f, L}, o = §.
division is considered in the vertical case, where every device has a unique set of Definition 2: The functions f; : R* — R are L-smooth for some L > 0,V: € 1,n: : for k=0,1,2,... K do

2: for i = 1...n in parallel do

features of the same samples.
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I Compression mathematically can be represented in the form of a vector function. Lo YL gk 4 gy (R 2y
| ‘ In our paper, we consider them having the following properties: [k with probability p
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Figure 1. Difference between regimes of data division E|Q(z) =z, Vz € R ﬁ 1 ﬁ;rj:% :30
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Compression We also assume that there exists a constant w > 0, such: < J > -
5 ) p 15: Using communications broadcast <A§i, wf
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Despite the considerable practical utility of distributed methods, they are not with- 17 Compute VL (Aw*,b).
out significant drawbacks. In particular, the parallelisation of a task does not nec- 12 ;Ii_}d it
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essarily result in an optimal reduction in time. That means that having n devices DHPL-Katyusha 2. end for
does not accelerate task by n times. This happens because of limited ability of net- : :
works to exchange information. Thus, the key bottleneck of parallel computation is The DHPL-Katyusha, the algorithm for the horizontal data division regime, is in- Numerical experiments
the communication part. There have been considered several ways of dealing with spired by the o)rlgmal L-Katyusha [3]. We use the variance reduction technique - -
this issue [2], but in our paper we concentrate solely on reducing communication for compressor's stochastics, thus in our method, every device calculates the com- e T | | e pm | e e |
cost of each iteration by decreasing the size of sending information also known as pressed gradient difference and broadcasts it to other workers. After that, the new 7 T T 1
compression technique [1] points are found using the momentum part, similar to L-Katyusha.
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Notation: p = constant of strong convexity, L = smoothness constant, w = compression constant (see Definition '
1.1), n = number of workers, o, = sum of workers’ gradients in the optimal point, s = total number of samples.

Don't jump through hoops and remove those loops: Svrg and katyusha are better without the outer loop, 2019.
16: end for




