Accelerated Methods with Compression for Horizontal and Vertical Federated Learning

Sergey Stanko, Timur Karimullin, Aleksandr Beznosikov

Moscow Institute of physics and technology

Introduction

To address the problem of the time-consuming process of function minimization, the community came to distributed algorithms, where the calculation process is divided among different devices. Such parallel computation can be used in situations, where data is distributed across several machines, as in the case of federated learning approach. The latter can be divided into two different regimes. One of these is horizontal federated learning, where each worker possesses their own collection of samples, but share the same set of features. A different way of data division is considered in the vertical case, where every device has a unique set of features of the same samples.

Compression

Compression mathematically can be represented in the form of a vector function. In our paper, we consider them having the following properties:

Definition 1 We say that the compression operator *Q* is unbiased, if $\mathbb{E}[Q(x)] = x, \forall x \in \mathbb{R}^d$.

We also assume that there exists a constant $\omega \geq 0$, such: $\mathbb{E} \left[||Q(x) - x||^2 \right] \leq \omega ||x||^2, \forall x \in \mathbb{R}^d.$

Despite the considerable practical utility of distributed methods, they are not without significant drawbacks. In particular, the parallelisation of a task does not necessarily result in an optimal reduction in time. That means that having *n* devices does not accelerate task by *n* times. This happens because of limited ability of networks to exchange information. Thus, the key bottleneck of parallel computation is the communication part. There have been considered several ways of dealing with this issue [\[2\]](#page-0-0), but in our paper we concentrate solely on reducing communication cost of each iteration by decreasing the size of sending information also known as compression technique [\[1\]](#page-0-1).

In DVPL-Katyusha every worker has its own set of features. Therefore, unlike the horizontal regime, in the vertical case all operations are performed on subvectors, corresponding to individual worker's components.

The main results

Table 1: Summary of bounds for iteration complexities for finding an ε -solution. Conv by the distance to the solution.

Notation: μ = constant of strong convexity, L = smoothness constant, ω = compression constant (see Definition 1.1), $n =$ number of workers, $\sigma_* =$ sum of workers' gradients in the optimal point, $s =$ total number of samples.

Problem statement

We state the standard distributed learning problem, which, formally, can be written in the following form.

> Figure 3. Comparison of different algorithms in vertical case on LIBSVM datasets mushrooms, a5a and w3a.

$$
\min_{x \in \mathbb{R}^d} \left[f(x) := \frac{1}{n} \sum_{i=1}^n \right]
$$

We assume functions to have the following properties.

Definition 2: The functions $f_i : \mathbb{R}^d \to \mathbb{R}$ are *L*-smooth for some $L > 0, \forall i \in \overline{1, n}$:

$$
f_i(x)\Bigg].
$$

every worker has the same random seed for

$$
\eta = \frac{\theta_2 \gamma}{(1+\theta_2)\theta_1}
$$
, set $\widetilde{L} = L \max\left\{\frac{\omega}{n}, 1\right\}$, $\sigma = \frac{\mu}{\widetilde{L}}$.

$$
f_i(y) \le f_i(x) + \langle \nabla f_i(x), y - x \rangle + \frac{L}{2} ||y - x||^2, \forall x, y \in \mathbb{R}^d.
$$

Definition 3: The function $f : \mathbb{R}^d \to \mathbb{R}$ is μ - strongly convex for some $\mu > 0$:

$$
f(y) \ge f(x) + \langle \nabla f(x), y - x \rangle + \frac{\mu}{2} \|y - x\|^2, \forall x, y \in \mathbb{R}^d.
$$

Compressor properties

DHPL-Katyusha

The DHPL-Katyusha, the algorithm for the horizontal data division regime, is in-spired by the original L-Katyusha [\[3\]](#page-0-2). We use the variance reduction technique for compressor's stochastics, thus in our method, every device calculates the compressed gradient difference and broadcasts it to other workers. After that, the new points are found using the momentum part, similar to L-Katyusha.

DVPL-Katyusha

, probability $p \in (0, 1]$, RandK select *j*-th sample with probability same random seed for random, connected with p and p_i). $w^0 = z^0 \in \mathbb{R}^d$, stepsize $\eta = \frac{\theta_2 \gamma}{(1 + \theta_2)\theta_1}$, set $\widetilde{L} = \max\left\{\frac{\overline{L}}{K}, L\right\}$, $\sigma = \frac{\mu}{\widetilde{L}}$.

 d llel do $+(1-\theta_1-\theta_2)y_i^k$ $\text{RandK}\left(\left\|\left\langle A_{ji}^T,w_i^k\right\rangle\right\|_{j=\overline{1,s}}\right)$ tions broadcast X_i^k and W_i^k indices, selected by RandK $Z \mathcal{L}_j\left(\sum\limits_{i=1}^n X_{ij}^k, b_j\right)_i - \tfrac{1}{K}\sum\limits_{i\in J^k} \tfrac{1}{sp_j}\nabla \mathcal{L}_j\left(\sum\limits_{i=1}^n W_{ij}^k, b_j\right)_i + \nabla \mathcal{L}\left(Aw^k, b\right)_i\,.$ $\tilde{x}+z_i^k-\frac{\eta}{\tilde{L}}\widetilde{g}_i^k)$ $k+1 = z_i^k$ with probability p with probability $1-p$ nunications broadcast $\left\langle A_{ji}^T, w_i^k \right\rangle$

 $(Aw^k,b)_i$

Numerical experiments

Figure 2. Comparison of different algorithms in horizontal case on LIBSVM datasets mushrooms,

a5a and w3a.

References

Project adam: Building an efficient and scalable deep learning training system.

In *11th USENIX symposium on operating systems design and implementation (OSDI 14)*, pages 571–582, 2014. [2] Jakub Konečnỳ, H Brendan McMahan, Felix X Yu, Peter Richtárik, Ananda Theertha Suresh, and Dave Bacon.

- [1] Trishul Chilimbi, Yutaka Suzue, Johnson Apacible, and Karthik Kalyanaraman.
- Federated learning: Strategies for improving communication efficiency. *arXiv preprint arXiv:1610.05492*, 2016.
- [3] Dmitry Kovalev, Samuel Horvath, and Peter Richtarik.

Don't jump through hoops and remove those loops: Svrg and katyusha are better without the outer loop, 2019.