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Abstract—Although deformable linear objects (DLOs), like
cables, are widely used in the majority of life fields and activities,
the robotic manipulation of these objects is considerably more
complex compared to the rigid-body manipulation and still an
open challenge. In this paper, we introduce a new framework
using two robotic arms cooperatively manipulating a DLO from
an initial shape to a desired one. Based on visual servoing and
computer vision techniques, a perception approach is proposed
to detect and sample the DLO as a set of virtual feature
points. Then, a manipulation planning approach is introduced
to map between the motion of the manipulators end-effectors
and the DLO points by a Jacobian matrix. To avoid excessive
stretching of the DLO, the planning approach generates a
path for each DLO point forming profiles between the initial
and desired shapes. It is guaranteed that all these inter-shape
profiles are reachable and maintain the cable length constraint.
The framework including the aforementioned approaches are
validated in real-life experiments.

Index Terms—Robotic co-manipulation, deformable linear ob-
jects, shape control, visual servoing.

I. INTRODUCTION

Deformable linear objects (DLOs), like cables, ropes, and
sutures, are involved in innumerable everyday life scenarios,
such as cable management in industry or at home, thread
packing in production lines, suturing in medical surgeries. Due
to the fact that DLOs have high degree of freedoms, which
makes the modeling and controlling of these objects highly
difficult and expensive, the automation of DLOs manipulation
is still an open challenge in robotics community. Over the past
several years there has been an increase interest in the research
conducted into the robotic manipulation of DLOs. [1]–[3].

Shape control of a DLO is a common task which has many
practical implementations, such as cable routing in automotive
industry [4] and cable management [5]. The shape control
task aims to deform the DLO into a designated shape. This
task consists of two main stacks, which are perception and
manipulation planning of the DLO [6].

Perception of DLOs includes recognition, state estimation,
and tracking using sensory systems like vision, force, tactile,
and others [7], [8]. Vision sensors are widely used for percep-
tion in the robotic manipulation since they are affordable and
proper for tasks that include objects detection and position
localization for both rigid and deformable objects [9], [10].
In the vision-based robotic manipulation of DLOs, a group
of researches considers to use add-on markers as feature

points and manipulate these points [11]–[13]. The issue with
this method is that it is not a practically feasible to add
these markers each time a DLO manipulation is needed. The
other group deals with the DLO contour points as the DLO
features [14], [15]. This method is more practical than the
former, but it requires more computations since it deals with
relatively larger number of points (the contour points).

The manipulation planning stack, also known as the control
stack, is to predict or compute how the DLO will behave
and deform under the effects of certain of manipulation se-
quences of the robotic system. Some researches discussed the
manipulation planning of DLOs using single-robot systems.
Researchers in [12] presented a model-based shape control
for DLOs grasped by a manipulator. The DLO has markers
as feature points, and the proposed method manipulates these
feature points towards their reference points in a sequential
manner. In [16] a cell concept to robotize the wire routing task
using a single manipulator equipped with an innovated light
weight end-effector is developed. Multi-robot systems also
used for the shape control tasks, since they improve the perfor-
mance of the systems in terms of accuracy, computational cost,
and flexibility. Thus, they have superiority over single-robot
systems in such tasks [17]. In [18] dynamic control schemes
are developed based on the discrete elastic rod model of the
DLO to achieve the shape control of a flexible cable using
human-like robotic system. Other works proposed manipula-
tion planning approaches based on an online estimation of the
local deformation model of DLOs, assuming that small change
of the DLO is linearly related to a small displacement of the
robot [14], [19], [20].

In this paper, we introduce a new framework to achieve
shape control of a DLO based on bi-manual manipulation. For
the simplicity, we will use the word ”cable” to refer to DLOs
throughout the rest of the paper. Based on visual feedback and
classical image processing methods a featureless cable is cap-
tured and modeled as a set of points uniformly distributed. An
approximate model of Jacobian matrix that mapping between
these cable points and the robots end-effectors configuration is
developed as the manipulation planning model. The aim of this
Jacobian is to compute the required motion of the robots end-
effectors to deform the cable into a desired shape. The desired
shape is passed to the system at the beginning of the task. The
proposed framework is illustrated in Fig. 1. Experiments are



Fig. 1. The proposed framework.

carried out on real system to validate the performance of the
developed framework. The main contributions of this work
are:

1. Develop a new framework for shaping featureless DLOs.
2. Propose a new virtual feature points generation algorithm

for DLOs representation and tracking.
3. Introduce a new manipulation planning approach that

describes the motion of the DLO feature points as a
function of the motion of the robots, and maintains the
DLO length constraint during the manipulation.

4. Validate the proposed framework in real-world experi-
ments

The remainder of this paper is organized as follows: Section
II presents the preliminaries including cable representation and
the considered assumptions. The perception and manipulation
planning methods are described in section III. The details of
experiments and the results are discussed in section IV. Finally,
section V ends the paper with a conclusion and future works.

II. PRELIMINARIES

Fig. 2 shows a cable grasped by two manipulators at
its two ends and the desired shape. The cable and the
desired shape are represented by N points uniformly dis-
tributed. ls is the distance between each two points. Let
P =

[
pT1 pT2 pT3 ... pTN

]T ∈ ℜ2N×1 be the set of
cable points coordinates and T =

[
tT1 tT2 tT3 ... tTN

]T ∈
ℜ2N×1 be the desired shape points coordinates; where pi =[
xpi ypi

]T
and ti =

[
xti yti

]T
, for i = 1, 2, ..., N . Let

R =
[
rT1 rT2

]T ∈ ℜ6×1 be the configuration set of the robots
end-effectors; where rm =

[
xm ym φm

]T
, for m = 1, 2.

Let Dim be the Euclidean distance between pi and rm when
the cable is fully stretched, Fig. 3a; and dim be the Euclidean
distance between pi and rm at any configuration of the cable,
Fig. 3a. Dim and dim are given as follows:

dim =
∥∥pi − rm

∥∥ (1)

Dim = nimls (2)

where nim is the order of pi with respect to rm. Hence, we
have Dim − dim ≥ 0 for all cable configurations.

The objective of the task is to deform the cable to fit
the desired shape. In other words, to guide the cable points
towards the desired ones. The cable points are continuously
tracked by an RGB camera placed perpendicularly over the
workspace plane. Since we are able to control the end-effectors
configuration, we need to formulate the motion of the cable
points as a function of the end-effectors motion. In this study
we consider the following assumptions:

• The manipulation is quasi-static, which means that the
robots manipulate the cable in a relatively slow velocity.

• The cable ends are fixed to the end-effectors, the grasping
task is out of the paper scope.

• The cable is unstretchable.
• Both the initial and desired shapes are reachable for the

robots within the workspace and the camera frame.

Fig. 2. Schematic of the robots end-effectors, the cable (grey), and the desired
shape (green).

(a) The cable at full-stretched configuration.

(b) The cable at any random configuration.

Fig. 3. The cable grasped by two robots in fully-stretched and random
configurations.

III. METHODOLOGY

A. Visual Feature Points Generation

In this work, we are dealing with a featureless cable,
where no markers or any features are added on it. A new
cable perception method is developed to generate a visual
feature points to be tracked during the manipulation. Thus,
the method can be considered as a better practical solution
compared to those methods that use different kind of physical
markers [11]–[13]. Furthermore, it requires less computations
than the methods that consider the cable contour [14], [15],
since it deals with significantly less number of data compared
with contour points. Based on classical image processing
techniques, the proposed method takes a colored image as an
input. This image includes the cable attached to end-effector



tools, where one of the tools is marked by a colored square,
Fig. 4. Then it detects the cable, samples into an N virtual
feature points, and returns the coordinates of these points. The
algorithm starts sampling the cable from the end that grasped
by that marked tool towards the other end of the cable. Thus
the order of the generated points is guaranteed during the
manipulation, and the change in each point coordinates can
be tracked.

Fig. 4. The algorithm input: a camera frame contents a cable grasped by two
end-effector tools.

The cable is detected and segmented by a sequence of
edge-detection method, and morphological operations. Once
we got the cable segmented, we apply Guo-Hall thinning
algorithm [21] to get the center line of the cable with a
one-pixle width. The marked tool is detected by color-based
segmentation. Then, we apply a mask window, shown in Fig. 5,
starting from the marked tool by placing the center of the mask
at the center of the marked tool. Then, the intersection point
between the cable and the mask is the first virtual feature point.
The mask slides to the obtained point to detect the next feature
point. The algorithm repeats this process till it reaches the
end of the cable, where no new intersection point is detected.
This process is illustrated in Fig. 6. Finally, we have a cable
modeled by N feature points uniformly distributed, where
the distance between each two points ls equals the radius of
the mask, and the algorithm returns the coordinates of these
generated points.

Fig. 5. The mask window.

B. Manipulation Planning

Once the cable is sampled into N feature points, the desired
shape can be represented similarly by N desired points. Thus,
the manipulation planning stack can be re-stated as guiding
the cable points towards the desired ones. The key problem of
this planning is to compute the Jacobian matrix that maps the
motion of these cable points to the motion of the robots end-
effectors. In this work, we propose an approximate model to
compute the Jacobian matrix based on the diminishing rigidity
property of the cables. First, let us consider that each cable
point pi is rigidly connected to the robot’s end-effector rm, at

Fig. 6. Feature points generation process.

the fully-stretched configuration. Thus, the coordinates of pim
can be given as:

pim =

[
xrm +Dim cos θm
yrm +Dim sin θm

]
(3)

where θ1 = φ1, θ2 = π − φ2.
Then, taking the first derivative of Eq. 3:

ṗim =

[
ẋrm − βmφ̇mDim sin θm
ẏrm + βmφ̇mDim cos θm

]
(4)

where β1 = 1 and β2 = −1. Eq. 3 can be reformulated in a
way that the motion of pi is a function of the robot rm motion:

[
ẋpi

ẏpi

]
=

[
1 0 −βmDim sin θm
0 1 βmDim cos θm

]ẋrm

ẏrm
φ̇rm

 (5)

Thus, the Jacobian that mapping between pi and rm assuming
that they are rigidly connected is given as:

Jim =

[
1 0 −βmDim sin θm
0 1 βmDim cos θm

]
(6)

It can be observed that this rigid connection undergoes two
factors:

a) The diminishing rigidity property of the cable, which
means that the rigid connection between pi and rm is
inversely proportional to the order of pi with respect
to rm. In another expression, the grasped points move
rigidly with the end-effectors, the points nearby the
grasped ones move almost rigidly and the farther points
move less rigidly. Berenson, In [22], showed that this
descent in the rigidity is exponentially proportional to
the distance from the grasped points.

b) The cable point pi, shown in Fig. 3, tends to behave like
it is rigidly connected to rm as much as Dmi − dmi

converges to zero,



Based on the above, we define a new factor that represents the
diminishing rigidity as an exponential function:

µim = e−κim(Dim−dim) (7)

where κim is the rate of decreasing the rigidity.
Since the cable is guided by its two ends, the motion of point
pi is subject to the motion of the both end-effectors r1 and
r2. Thus, an additional factor αim, that describes the motion
of pi as a ratio of the motion of end-effector rm:

αim = 1− nim

N
(8)

Then, we multiply the Jacobian Jim in Eq. 6 by αim and µim

to obtain the final formula that maps the motion between the
pi and rm:

Jim = αimµim

[
1 0 −βmDim sin θm
0 1 βmDim cos θm

]
(9)

Finally, the Jacobian of pi undergoes the guidance of two
robots is given as:

Ji =
[
Ji1 Ji2

]
2×6

(10)

Since the cable is manipulated in a low velocity (quasi-static
manipulation), we re-write Eq. 5 as:

∆Pi = Ji∆R (11)

and the formula for all cable points is:

∆P2N×1 = J2N×6∆R6×1 (12)

Then, the end-effectors motion required to guide the cable
towards the desired shape is:

∆R = J+∆P (13)

where J+ is the Moore-Penrose pseudo-inverse:

J+ = (JTJ)−1JT (14)

and ∆P is given as:

∆P = T − P (15)

∆R is bounded to avoid any excessive changes in motion
during the manipulation.

C. Intermediate Profiles Generation:

To avoid excessive stretching and maintain the length
constraint of the cable during the manipulation, we propose
an algorithm that generates waypoints of the cable points
starting from the initial shape towards the desired one. These
waypoints are represented as set of intermediate profiles where
all are reachable and the length of these profiles equals the
cable length. Thus, the cable will move along these profiles
towards the desired one and the cable length constraint will
be maintained. This algorithm computes the distance dis
between each cable point and its corresponding point in the
desire profile. Then, the number of the intermediate profiles

is obtained by dividing the maximum distance dismax by a
user-defined step λ. Then, for each generated intermediate
profile, the algorithm checks whether it equals the cable length,
otherwise the step size is reduced.

Once the intermediate profiles are generated, The method
starts computing the required ∆R to guide the cable from the
current shape to the desired shape along the intermediate ones.

An average error, eavg , and maximum error, emax, are
considered as the metrics of the algorithm performance.

eavg =
1

N

N∑
i=1

∥∥ti − pi
∥∥ (16)

emax = max(
∣∣T − P

∣∣) (17)

where
∣∣•∣∣ is the element-wise absolute value.

IV. EXPERIMENTS RESULTS

A. System Setup

The experimental setup of this work is shown in Fig. 7. Two
KUKA LBR iiwa 14 manipulators are used. Each manipulator
has 7 degrees of freedom and equipped with a special tool to
attach the cable’s end. The utilized camera is Intel Realsense
D435. Images are captured at rate of 16 frames per seconds
with a size of 640× 480. The camera is mounted perpendic-
ularly to the workspace plane. The robots are connected to
a computer via a LAN network. The algorithms pipeline is
built in the Robotic Operating System (ROS) framework [23],
where the image processing node is written in Python based on
the OpenCV library [24], and the robots control computation
and command nodes are written in C++ based on the ROS
metapackage for the KUKA LBR iiwa developed by Hen-
nersperger et al [25]. The robots linear and angular velocities
are limited to 0.030m/s and 0.050rad/s, respectively.

Fig. 7. The hardware setup.

B. Results

The camera detects and tracks the cable during the manipu-
lation. Using conventional image processing techniques, such
as morphological operations and color-based segmentation,
the cable is sampled into N points. To keep tracking the
points order, one of the end-effector tools is marked in blue.
Fig. 8 presents the cable perception algorithm steps. First, the
algorithm detects the marked tool to determine the starting
point, Fig. 8b; Next, it segments the cable and apply thinning



algorithm, Fig. 8c. Finally, it starts sliding the mask, shown in
Fig. 5, along the segmented cable to create the feature points.
The generated points are plotted on the output frame of the
algorithm, Fig. 8d.

The next step is generating the intermediate profiles, which
are the waypoints of the cable points. Fig. 9 shows the gener-
ated intermediate profiles for two different desired shapes. It
can be seen that the generated profiles has the same length of
the cable and they have small step among each other which
ensure that the robots will not make any undesirable large
displacement that may lead to over stretching the cable. Thus
the cable length constraint will be maintained.

Once the intermediate profiles are generated, the robots start
cooperatively manipulating the cable towards the designated
shape throughout these profiles. Fig. 10 and Fig. 11 show two
experiments. In both experiments, the cable approached the
desired shape well. However, in the second experiment we
got a more accurate shape compared to the first one.

The average and maximum errors of these experiments are
listed in Table I. Fig. 12 shows how the errors decrease during
the manipulation.

According to carried out experiments, it can be observed
that the perception algorithm has a reliable performance in
the manner of accuracy and speed. It was able to detect and
sample the cable even for cases where the cable at the border
of the image frame. However, it fails when the cable is partially
out of the frame or occluded. The planning model was able to
guide the cable towards the designated shape. Even though the
model were not able to finalize the task with high accuracy,
it shows a stable performance, where the robots did not move
unpredictably or diverge from the desired shape.

TABLE I
AVERAGE AND MAXIMUM ERRORS (eavg AND emax)

Experiment 1 (Fig. 10) Experiment 2 (Fig. 11)
eavg [mm] 7.76 6.54
emax[mm] 10.9 8.61

V. CONCLUSION

In this paper, we introduced a new framework for shape
control problem of a cable on a 2D plane using two manipu-
lators. The framework has two main algorithms for the cable
perception and manipulation. The perception algorithm utilizes
an RGB camera to detect and track the cable, then it samples
the cable as set of N points using classical image processing
methods. These points are considered as virtual feature points.
The manipulation planning algorithm computes the Jacobian
matrix, that maps between the cable points and the robots
end-effectors configuration, considering the order of the points
with respect to each end-effector and the diminishing rigid-
ity property of DLOs. Furthermore, avoiding over-stretching
and maintaining the cable length constraint is considered
by introducing an additional algorithm to generate a set of
intermediate profiles between the cable initial shape and the
desired shapes. These profiles guarantee that the cable will not

(a) Input frame. (b) Starting point segmentation
(inverted colors).

(c) Cable segmentation (in-
verted colors).

(d) Output frame including the
generated feature points.

Fig. 8. The image processing node input and output.

(a) (b)

Fig. 9. The generated intermediate profiles (light blue) between the cable
initial configuration (red) and the desired shape (green)

undergo any over stretching. Real-life experiments are carried
out to evaluate the proposed framework. The experiments
showed an adequate performance of the system. In the future,
the perception algorithm will be improved to tackle the case
when part of the cable is hidden. The manipulation planning
algorithm will be further enhanced to obtain higher accurate
and robust performance. Additional future work are exploiting
force sensors to improve the manipulation performance and
consider environment interaction during the manipulation.
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