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Abstract—This paper proposes a state observer design method
for tensegrity structures based on joint use of non-minimal
representation of the structure’s model and orthogonal decompo-
sition method. Tensegrity structures have a number of potential
applications in robotics, from drones to planetary probes, and
at the same time their use poses a number of open research
problems. Effective state observer design is one of them. As
evident by success of model-based state estimator design methods
in various areas of robotics, computational problems posed by
complex dynamics can be overcome; often they are overcome with
the use of simplifications, projections and appropriate choices of
state variables. The use of so-called node-distance coordinates
can simplify the dynamics equations of tensegrity structures.
The resulting model (and its linearized form) will include
explicit constraints, which can be dealt with using orthogonal
decomposition methods. Resulting linear equations can be used
to design state observer by solving Riccati equation. The paper
presents simulation results illustrating the work of the proposed
observer.

Index Terms—Tensegrity, state observer design, non-minimal
coordinates, orthogonal decomposition

I. INTRODUCTION

Tensegrity structures have often been seen as both very
promising in terms of their properties and very complex in
terms of their design and use. They present special interest in
robotics applications because of their mechanical properties:
light-weight, foldability, and high stiffness-to-mass ratio [1]. In
mobile robotics especially, their ability to internally distribute
forces and withstand collisions make them interesting struc-
tural elements for robots moving in uncertain environments
[2]–[4]. Design of tensegrity robots is an actively investigated
research area, with a variety of robot designs investigate: from
legged robots to planetary probes to flying robots [5]–[8]. Most
of those studies are focused on general design principles and
prototypes, a wide deployment of tensegrity robots to solve
practical tasks has not yet been achieved.

Studies in control of tensegrity robots are also limited to
particular areas, such as gait generation for rolling robots or
mid-flight morphing, with active use of machine learning or
data-driven methods [9]–[12]. Model-predictive control and
optimization-based control designs have also been proposed
[13], [14]. The difficulties with the direct adaptation of the
traditional control approaches lie in the complexity of the
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tensegrity dynamics, resembling a system of independent but
interacting rigid bodies, rather than a kinematic chain, and
in non-linear properties of the elastic elements, making local
linearization more difficult.

One of the areas that have been given relatively little
attention is the state estimation of tensegrity robots. While the
task has well-known connections to control design problems, it
nevertheless stands alone as an open problem. In this paper we
aim to propose a method based on two changes of coordinates
describing the position of tensegrity structure, allowing 1) to
isolate internal variables, such as relative positions of the robot
elements, from the global ones, such as the position of the
center of mass of the whole structure, which it might not be
possible to estimate and 2) describe the linearized dynamics in
minimal coordinates where optimal control methods provide
observer design tools.

II. CONTROL OF TENSEGRITY STRUCTURES: STATE OF
THE ART

Early attempts at designing control and state estimators
for tensegrity structures can be found in [15], where Out-
put Variance Constraint control, reduced to LQG (Linear
Quadratic Gaussian) control was formulated and solved for a
two-stage six-bar tensegrity structure. Proposed models were
further employed in [16] where equilibrium manifold was used
in the deployment of the tensegrity structure. These works
established a framework for controlling a type of tensegrity
tower structures, further developed in [17] for structures based
on tensegrity prism and in [18] for class-2 tensegrity structures,
also in a form of a grounded tower.

The linearization-based approach introduced in [15] was
further developed in [19], where a descriptor model was used
in order to formulate a convex optimization-based control
design problem. As in [15], a linear controller with an in-
ternal state was proposed, allowing dealing with both control
and state estimation problems. Time-optimal control problems
were tackled in [20] for the deployment of a tensegrity struc-
ture from a folded position; the paper proposed a numerical
approach to solving the problem and highlighted some of the
computational challenges such problem formulation poses. In
[21], linearized model and h-infinity control methods based
on solving linear matrix inequalities were used to control the
proposed tensegrity telescope.



In article [22], active control scheme for extraterrestrial
applications of tensegrity structures was proposed. In [23]
a proportional-integral-derivative (PID) controller was used.
Paper [24] proposed control for morphing tensegrity airfoils.

A. Models of Tensegrity Structures

As this section already implied, models have been playing a
key role in the development of control methods for tensegrity
structures. In particular, papers [16], [20], [25] made active use
of the vector form of Lagrange equations of motion, known
as manipulator equations in Robotics literature. In [15], [19],
[21] linearized models played a key role. We should note
that linearized models are usually built on nonlinear models,
linking the two.

In [26], a new type of non-minimal parametrization (choice
of the set of coordinates that describe the current configuration
of the structure) for tensegrity structures was proposed, allow-
ing for a simpler formulation of its dynamics. In particular,
one of the appeals of the proposed method is more structured
linear models. In this paper, we take advantage of this method.
We note that rather than departing from the standard approach,
we augment it with a new step: instead of building manipulator
equations and then linearizing them, we use a new set of
coordinates, build equations of motion in terms of these
coordinates and then linearize the resulting nonlinear ODEs.

B. Orthogonal decomposition methods

One of the typical problems with models described in non-
minimal coordinates is the difficulty of finding control laws
based on criteria developed for minimal models; in fact, if two
coordinates are in affine relation, both cannot go to zero at the
same time, making control design methods based on Lyapunov
theory hard to apply directly. Non-minimal parametrization in
[26] introduces exactly this type of affine constraints.

This problem has been tackled previously in a number of
ways. For example, control design methods for descriptor
systems solve a related but more general problem [27]–[29].
In walking robotics, a similar problem was tackled using
orthogonal projections [30]. The method allows us to decom-
pose dynamics into its orthogonal components via projections
onto smaller-dimensional subspaces, and obtain a minimal
representation that can be used in conjunction with standard
Lyapunov theory-based control methods. In [31] for instance,
this method was used to derive a state estimator for the full
state of the robot.

In this paper we use the orthogonal decomposition method
to propose an observer design for tensegrity structures, using
non-minimal coordinates. We should note that this is not
a trivial extension of existing methods, as the nature of
constraints arising from our use of non-minimal representation
is different compared to what was previously tackled with the
orthogonal decomposition methods.

III. NODE-DISTANCE COORDINATES

Let ri be position of the i-th node. Then we can define δij as
vector pointing from the node ri to the node rj . Concatenating

all such distances in a single vector δ gives us node-distance
coordinates. These coordinates were originally introduced in
[26]. Concatenating node positions ri into a single vector r
gives us node-position coordinates. Connection between the
two sets of coordinates is given by the relation:

δ = Dr (1)

where D is mapping matrix. In node-position coordinates
dynamics, in the absence of external forces, takes form:

Hr̈ = D⊤f (2)

where H is inertia matrix and f is vector of elastic forces. In
node-distance coordinates the same dynamics can be written
as: 

Hδ δ̈ = f + Lλ

Mr̈C = 0

L⊤δ̈ = 0

(3)

where L is a Lagrange multiplier Jacobian matrix and λ are
Lagrange multiplier, both appearing in the equations because
the node-distance coordinates are non-minimal, requiring ex-
plicit constraints; M =

∑
(mi)I - inertia matrix of the whole

system in Cartesian coordinates, mi is the mass of a i-th node,
and rC is the position of the center of mass of the system.

Note that in node-distance coordinates the expression for
the elastic forces takes the following form:

fij = −µij(||δij || − ρij)
δij

||δij ||
− γij δ̇ij (4)

where µij and γij are stiffness and dissipative coefficients,
and ρij is a rest length of the elastic element connecting i-th
and j-th nodes.

The important property of (4) is that each component of
f depends only on a single component of δ, which becomes
important when we build a linearized model of the system.

A. Coordinates ordering

There are multiple ways to order the elements in the vector
δ. Let us consider the following ordering:

δ =
[
δx1,2 δy1,2 δz1,2 δx1,3 δy1,3 δz1,3 ...

]⊤
(5)

r =
[
rx1 ry1 rz1 rx2 ry2 rz2 ...

]⊤
(6)

where
[
δxi,j δyi,j δzi,j

]⊤
= rj−ri. With that we can find D:

D =



−I I 0 0 0 ...
−I 0 I 0 0 ...
−I 0 0 I 0 ...

...
0 −I I 0 0 ...
0 −I 0 I 0 ...

...


(7)

where I ∈ R3×3 is an identity matrix.
An alternative ordering in δ is:

δ =
[
δx1,2 δx1,3 δx1,4 ... δz1,2 δz1,3 δz1,4 ...

]⊤
(8)

r =
[
rx1 rx2 rx3 ... rz1 rz2 rz3 ...

]⊤
(9)



Let us define matrix D0 which is given by taking formula
(7) replacing I with 1; then mapping D for (8) is given as:

D =

D0 0 0
0 D0 I
0 0 D0

 (10)

IV. LINEARIZED MODEL

As mentioned before, node-distance coordinates are non-
minimal; we can define minimal coordinates z and an or-
thonormal basis N = col(D) serving as a map from z to
δ, where col(·) is an operation returning orthonormal basis in
the column space of D:

δ = Nz (11)

Eq. (11) implies that z = N⊤δ. Combining (1) and (2) we
write a system of equations that can be solved for δ̈:[

H 0
−D I

] [
r̈

δ̈

]
=

[
D⊤f
0

]
(12)

We can solve this for δ̈ using Schur compliment:

δ̈ = DH−1D⊤f (13)

With that, we can construct dynamics in minimal coordi-
nates:

z̈ = N⊤DH−1D⊤f (14)

Note that the only non-linear component of (13) is f , and
linearization of f is computationally simple, as ∂f

∂z = ∂f
∂δN,

where Aδ = ∂f
∂δ is:

Aδ =
∂f

∂δ
=


∂f1,2
∂δ1,2

0 ... 0

0
∂f1,3
∂δ1,3

... 0

... ... ... ...

0 0 ...
∂fn,(n−1)

∂δn,(n−1)

 (15)

Note that the expression (15) corresponds to the ordering
(5). We can find Aδ̇ = ∂f

∂δ̇
in a similar way. Thus we can write

linearization of the system dynamics as:

A =

[
0 I

N⊤DH−1D⊤AδN N⊤DH−1D⊤Aδ̇N

]
(16)

This gives as a linear model of the system. Control matrix
of the system can be found in a similar manner, and affine
component of the dynamics can be found as a discrepancy
between the linear model and the full model of the system at
the evaluation point.

V. NODE-DISTANCE OBSERVER

In this section we tackle the problem of designing state
observer for a system whose dynamics is described in node-
distance coordinates. We assume that the measurements are
linear with respect to position and velocity variables:

y = C1δ +C2δ̇ (17)

where C1, C2 are observation matrices. In minimal coordi-
nates the expression for y becomes:

y = C1Nz+C2Nż (18)

We can define system state x and observer state as x̂:

x =
[
z⊤ ż⊤

]⊤
(19)

x̂ =
[
ẑ⊤ ˙̂z⊤

]⊤
(20)

With that we can define observation matrix and Luenberger
observer:

C =
[
C1N C2N

]
(21)

ẋ = Ax+ LC(x− x̂) + c (22)

where c is the affine component of the system dynamics, and
L is observer gain matrix, which can be found by solving
Riccati eq.

VI. SIMULATION STUDY

In this section we consider an X-shaped tensegrity structure,
referred to as ”X tensegrity” or ”Cross tensegrity”, as well as
an ”X module”, emphasizing the limits of the standalone use
of such simple structures in a 3D environment [32], [33]. The
structure consists of two bars and four cables, connected via
four nodes. A render of the structure is shown in Fig. 1.

Fig. 1. X tensegrity; 1-4 are nodes

For simplicity we consider planar motion of the structure,
using two coordinates to describe position of each node ri.
Assuming that the node positions are given as r1 = [0, 0],
r2 = [0.5, 0], r3 = [0, 0.8], and r4 = [0.5, 0.8]. This gives
us the following δ and D:

δ = [ 1
2 0 0 4

5
1
2

4
5 − 1

2
4
5 0 4

5
1
2 0 ] (23)

D =


−I I 0 0
−I 0 I 0
−I 0 0 I
0 −I I 0
0 −I 0 I
0 0 −I I

 (24)



where 0, I ∈ R2×2 are zero and identity matrices. Column
space of D is six-dimensional.

We assume that the rest lengths of the cables are 1m,
the stiffness coefficients µ are 0.5 N/m, and the dissipation
coefficients γ are 0.2 N·s/m. We only measure r2− r1, giving
us observation matrices C1 and C2:

C1 =

I 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 , (25)

C2 =

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 . (26)

Defining cost function as J =
∫ (

x⊤Qx+ u⊤Ru
)
dt,

where Q = 100 · I12×12 and R = 2 · I6×6 we can solve
Riccati eq. to find L.

Fig. 2 shows simulation results based on closed-loop dy-
namics with the linearized model. Initial error is ei = 0.03
for each coordinate (in minimal coordinates).

Fig. 2. Simulation results: State estimation error norm as a function of time

As fig. 2 indicates, the error approaches zero. We should
note that the applicability of this result to non-linear case
depends on how well the linearization represents the structure
along its trajectory (or near the linearization point), and should
be studied separately for particular cases. What we believe the
present study indicates is the possibility to represent tensegrity
structures, famous for the complexity of their dynamics, in
a simplified minimal coordinate form, via a combination
of node-distance representation and orthogonal projections,
yielding a structured dynamical model.

VII. CONCLUSIONS

In this paper, a state observer design process for tensegrity
structures was proposed. The key aspects of the proposed
method include the use of node-distance coordinates, a pre-
viously introduced non-minimal coordinate representation of
tensegrities. Another aspect is the use of orthogonal de-
composition to build minimal linear model. In order to use
the method, a transformation of the nonlinear model was
performed. Resulting method retains simplicity of derivation
inherent to the node-distance coordinates, and streamlined

control design process available through the orthogonal de-
composition method. Note that a number of problems remain
open, including model parameter estimation, robustness issues
and identifying limits of linear model-based control and state
estimation procedures for tensegrity structures.
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