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Abstract—This article is devoted to implement the stiffness
modeling of 1-DOF double pantograph robot, which consists
of two legs connected to each other with two revolute joints.
The stiffness modelling is implemented using two techniques:
Virtual joint modeling (VJM) and Matrix structural analysis
(MSA). In order to find end-effector deflection, an applied load is
exerted along different directions at multiple points in the robot
workspace, which is presented in scatter plots. The computational
cost and difference between results were studied and compared
for both methodologies.

Index Terms—Stiffness modeling, Parallel robot, Double pan-
tograph, Virtual joint modeling, Matrix structural analysis

Github repository:
https://github.com/Walid-khaled/Double-Pantograph-Stiffness-
Modelling

I. INTRODUCTION

Parallel manipulators have been widely used in modern ap-
plications as a machine tool. As a result, considerable attention
has been paid to the tool accuracy for more precise industrial
operations. In addition to that, parallel structures have some
advantages over serial manipulators such as higher payload,
and higher rigidity. Since the external load is distributed
among several legs, these structures have higher stiffness and
higher accuracy as the error is not accumulated at the end-
effector (EE) as in the case of serial robots [1].

Double pantograph, which is frequently referred as scissor
lifting mechanism, is 1-DOF transitional mechanism consists
of two serial kinematic legs move simultaneously and attached
to EE platform as shown in Fig.1. It has one horizontal
prismatic joint and it can be actuated using electric motor or
hydraulic system. The main application of scissor lifts is the
vertical load transmission with or without human intervention.
They are commonly used in parts assembly and disassembly,
construction maintenance, and other industrial tasks such as
landing access [2].

To address the accuracy problem, stiffness analysis can be
considered as a best practise because it allows us to calculate
the deflections at the EE under an applied external load. Hence
to improve the overall accuracy by calculating the difference
between the desired pose and the actual pose of the robot [3].
In literature, three main approaches for stiffness modelling
are determined. FEA (Finite Element Analysis) [4] [5] is the
most accurate approach and suitable for non-linear analysis;

however, it is computationally expensive as it decomposes
structure’s links into large number of finite small elements.
Matrix Structural Analysis (MSA) [6] [7] [8] applies the
same idea of FEA, but it handles the computational cost as
structure’s elements are significantly simplified. Nevertheless,
it is only suitable for parallel robots. Finally, the Virtual Joint
Modeling (VJM) [9] [10] [11] which is the simplest technique
as it assumes that all links are rigid expanded with virtual
joints which represents the elasticity of links and joints. In
this work, MSA and VJM are implemented and a comparison
between the two methods is held.

Fig. 1. Scissor Lifting Mechanism

II. KINEMATICS

In order to implement the stiffness modelling of the double
pantograph robot, forward and inverse kinematics have to be
derived for each kinematic chain. The kinematics scheme is
illustrated in Fig.2.

A. Forward Kinematics
As shown, the local coordinate frames of both serial chains

coincide, and they are located in the middle of the horizontal
prismatic joint, x-axis. Since we only have one prismatic joint,
it will drive both legs with half of its stroke. For example,
when the active prismatic joint is advanced with dx, each chain
will be advanced with a horizontal distance dx/2. It is also
noticeable that each leg contains three revolute joints and their
axis of rotation, y-axis, is perpendicular to the prismatic joint
axis. These 2 legs also coincide at the upper local coordinate
frame which is the EE frame. As the lower and upper local
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frames are shifted only in the direction of z-axis, it means that
if one leg is translated in +x-axis first, it will translate in −x-
axis later and vice versa. Since the robot structure consists
of 2 similar chains, the forward kinematics of each chain i
can be written as a product of the following homogeneous
transformations:

T = TbaseTx (di,1)Ry (qpassive i,1)Tx(l)Ry (qpassive i,2)

Tx(l)Ry (qpassive i,3)Tx (di,2)Ttool
(1)

Fig. 2. Kinematic Schematic

where l is the link length. For the ith leg, di,j is half of dis-
placement of the jth prismatic joint, and qpassive i,j is revolute
joint variable for the jth passive joint. Transformation between
the global coordinate frame and to the local coordinate frame is
described by Tbase matrix, while transformation between legs’
end is given by Ttool matrix. Table 1 presents the translational
and rotational parameters for each single leg.

TABLE 1
KINEMATICS PARAMETERS

Parameter i = 1 i = 2
di,1 dx/2 −dx/2
di,2 −dx/2 dx/2
qpassive i,1 −q3 −q1
qpassive i,2 q2 −q2
qpassive i,3 q1 q3

where

q1 = atan 2
(√

l2 − dx2, dx
)

(2)

q3 = 180◦ − q1 (3)

q2 = q3 − q1 (4)

Thus, given dx from prismatic joint, the height of the panto-
graph dz can be calculated as T (3, 4).

B. Inverse Kinematics
The inverse kinematics aims to calculate the active and

passive joints of the robot at each height dz. It is simple and
straight forward as it can be written as:

• Active prismatic joint: dx =
√

l2 − dz2

4

• Passive revolute joints q1, q2, q3 can be obtained from
equations 2, 3, 4.

C. Structure Limits
This type of structures should implies some constraints

on motion to avoid structure failure. Hence, structure limits
should be analyzed as follows:
Since l2 − dz2

4 ≥ 0
thus dz ≤ 2l

Similarly, z = 2
√
l2 − dx2 so

l2 − dx2 ≥ 0
thus dx ≤ l
Assuming that l = 0.5 m, dx ≤ 0.5, dz ≤ 1

• when the structure is totally expanded dz = 1, dx = 0
q1 = q3 = 90◦, and q2 = 0

• when it is totally compressed dx = 0.5, dz = 0 q1 = 0,
and q2 = q3 = 180◦

In both cases, the structure will break because it is not allowed
to derive the robot at these limits. Thus, 0.1 m and 0.9 m are
assigned as minimum and maximum height the robot can reach
safely as shown in Fig.3.

Fig. 3. Pantograph Model

III. STIFFNESS OF THE LINKS

We considered links as cylindrical beams made of alu-
minium. Generally, 3D beam elements could have stiffness
matrix K in the following form:

K =

[
K11 K12

K21 K22

]
(5)

where
• K11 : represents force/torque reaction due to left-end

deflection at the left-end point of the beam.
• K12 : represents force/torque reaction due to right-end

deflection at the left-end point of the beam.
• K21 : represents force/torque reaction due to left-end

deflection at the right-end point of the beam.



• K22 : represents force/torque reaction due to right-end
deflection at the right-end point of the beam.

For regular beam:

K11 =



EA
L 0 0 0 0 0
0 12EIz

L3 0 0 0 6EIz
L2

0 0
12EIy
L3 0 − 6EIy

L2 0

0 0 0
GIρ
L 0 0

0 0 − 6EIy
L2 0

4EIy
L 0

0 6EIz
L2 0 0 0 4EIz

L



K12 =



−EA
L 0 0 0 0 0
0 − 12EIz

L3 0 0 0 − 6EIz
L2

0 0 − 12EIy
L3 0

6EIy
L2 0

0 0 0 −GIρ
L 0 0

0 0 − 6EIy
L2 0

2EIy
L 0

0 6EIz
L2 0 0 0 2EIz

L


K21 = KT

12

K22 =



EA
L 0 0 0 0 0
0 12EIz

L3 0 0 0 − 6EIz
L2

0 0
12EIy
L3 0

6EIy
L2 0

0 0 0
GIρ
L 0 0

0 0
6EIy
L2 0

4EIy
L 0

0 − 6EIz
L2 0 0 0 4EIz

L


• L : is the length of the beam.
• Iy : is the principle moment of inertia around y-axis.
• Iz : is the principle moment of inertia around z-axis.
• Iρ : is the torsional moment of inertia.
• E : Young’s modules of the aluminium beam.
• G : Coulomb’s modules of the aluminium beam.

IV. VIRTUAL JOINT MODELLING

Kinematic model for each leg can be represented as depicted
in Fig.4 where Ac, Ps refers to active joint and prismatic joint
respectively.

Fig. 4. Kinematic Model

In VJM, active prismatic joint could be presented by adding
1-DOF virtual spring, while elastic links can be expressed as
rigid links followed by 6-DOF virtual spring as illustrated in
Fig.5.

Fig. 5. VJM Model

The corresponding transformation can be obtained by ex-
tending equation 1 as follows:

T = TbaseTx (di,1)Tx (θi,1)Ry (qpassive i,1)Tx(l)

T3D (θi,2−7)Ry (qpassive i,2)Tx(l)T3D (θi,8−13)

Ry (qpassive i,3)Tx (di,2)Ttool

(6)

where Tbase and Ttool are identity matrices in our case. For the
ith leg, θi,j is the jth virual joint. The T3D

(
θi,j−(j+5)

)
is the

6-DOF virtual spring, and it can be described as the following
transformations:

T3D

(
θi,j−(j+5)

)
= Tx (θi,j)Ty (θi,j+1)Tz (θi,j+2)

Rx (θi,j+3)Ry (θi,j+4)Rz (θi,j+5)
(7)

In [9], the classical Cartesian stiffness matrix for each chain
can be caculates as:

K0
c,i =

(
Jθ,iK

−1
θ,i J

T
θ,i

)−1

(8)

where the Jθ is the numerical jacobian matrix calculated
with respect to the virtual joint variables, and the Kθ is the
aggregated spring stiffness matrix. It is 13×13 diagonal matrix
contains three major diagonal components which are the stiff-
ness parameters of the flexible elements. The first component
is a scalar value represents the active joint stiffness and it is
assumed as 106N/m. The second and third components are
6 × 6 matrices represents the stiffness properties of the two
links respectively.

Kθ =

 Kactive 0 0
0 K22,6×6 0
0 0 K22,6×6


13×13

(9)

K22 is used because virtual joints are attached to the right-
end of the links. Using the classical Cartesian stiffness matrix
K0

c obtained at equation 8, the Cartesian stiffness matrix of
the chain i can be found:

Kc,i = K0
c,i −K0

c,iJq,iKCq,i (10)

where

KCq,i =
(
JT
q,i

(
K0

C,i

)
Jq,i

)−1
JT
q,i

(
K0

C,i

)
(11)

In equation 11 Jq is the numerical jacobian matrix calcu-
lated with respect to the passive joint variables. It is 6 × 3
matrix since the single chain consists of three passive joints.

Therefore, Cartesian stiffness matrix Kc of the whole robot
can be computed as the summation of the Cartesian stiffness
matrices of the two chains [9].

Kc =

n∑
i=1

Kci (12)

Consequently, the EE deflection ∆t can be obtained from
Hook’s law as shown below.

∆t = K−1
c W (13)



V. MATRIX STRUCTURAL ANALYSIS

The MSA model for the double pantograph [12] is depicted
in Fig.6 where the structure is represented by 21 nodes. These
nodes are connected to each other based on the structure
connection type. The following table explains the nodes con-
nections and connection types.

TABLE 2
NODES CONNECTIONS AND CONNECTION TYPES

Flexible
Links

Passive
Joints

Rigid
Joints

Elastic
Joints

Rigid
Support

<3,5>,
<4,6>,
<7,9>,
<8,10>,
<11,13>,
<12,14>,
<15,17>,
<16,18>

<0,3>,
<2,4>,
<5,6>,
<9,11>,
<10,12>,
<13,14>,
<17,19>,
<18,e>,
<19,e>

<0,1>,
<5,8>,
<6,7>,
<13,16>,
<14,15>

<1,2> <0>

Fig. 6. MSA Model

The rigid support constraint at node 0 can be expressed as
follows: [

06×6 I6×6

] [ W0

∆t0

]
= 06×1 (14)

The deflection and loading constraints for flexible links
could be described as:

[
−I6×6 06×6 K11

i,j K12
i,j

06×6 −I6×6 K21
i,j K22

i,j

]
Wi

Wj

∆ti
∆tj

 =

[
06×1

06×1

]
(15)

where i and j are the node numbers. It should be noted
that the stiffness matrices used in flexible links constraints
should be global matrices, thus a transformation from local
stiffness matrices to the global coordinate system are applied
as described below.

[
K11

i,j K12
i,j

K21
i,j K22

i,j

]
=

[
QK11

i,jQ
T QK12

i,jQ
T

QK21
i,jQ

T QK22
i,jQ

T

]
(16)

where Q is 6×6 matrix consists of two main diagonal rotation
matrices R which describes the rotation of the link end.

Q =

[
R3×3 03×3

03×3 R3×3

]
(17)

The passive joints allows rotations around y-axis, then the
constraints are:

05×6 05×6 λr,y
i,j −λr,y

i,j

λr,y
i,j λr,y

i,j 05×6 05×6

λp,y
i,j 01×6 01×6 01×6

01×6 λp,y
i,j 01×6 01×6




Wi

Wj

∆ti
∆tj

 =


05×1

05×1

01×1

01×1


(18)

where
λp,y
i,j =

[
0 0 0 0 1 0

]
(19)

λr,y
i,j =


1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 0 1

 (20)

while rigid joints constraints are as follows:

[
06×6 06×6 I6×6 −I6×6

I6×6 I6×6 06×6 06×6

]
Wi

Wj

∆ti
∆tj

 =

[
06×1

06×1

]
(21)

Since the active elastic joint 1-2 is translate along x-axis,
the constraints can be described by the following equation: 05×6 05×6 λr,x

1,2 −λr,x
1,2

I6×6 I6×6 06×6 06×6

λe,x
1,2 01×6 Kaλ

e,x
1,2 −Kaλ

e,x
1,2




W1

W2

∆t1
∆t2

 =

 05×1

06×1

01×1


(22)

where

λe,x
1,2 =

[
1 0 0 0 0 0

]
(23)

λr,x
1,2 =


0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 (24)

The external force is applied at node e and it is donated by
the following equation:[

I6×6 06×6

] [ We

∆te

]
= Wext (25)

We can aggregate all of the system linear equations in matrix
form using the above-mentioned equations (14)-(25). Since we
have 21 nodes, and each node is represent by wrench and
deflection, the aggregated matrix could be described as shown
below:



[
A282×246 B282×6

C6×246 D6×6

] Wag126×1

∆tag120×1

∆te

 =

[
0282×1

Wext

]
(26)

The above equation can be written in the following form:

Mx = v (27)

where the main matrix M is 288 × 252. The system is over
constrained, since M matrix is not invertible. In order to solve
such a system, we need to find the smallest 2-norm x which
at the same time provides the least residual e.

e = Mx− v (28)

As the minimum of ||e||2 coincides with the minimum of
(Mx − v)T (Mx − v), then the solution to this least squares
problem is given by a pseudoinverse similar to finding the
extremum as follows:

2MT (Mx− v) = 0
MTMx = MT v

x = (MTM)−1MT v

then x can be calculated as

x = M+v (29)

So, the EE deflection ∆t is the last 6 elements of vector x:

∆t6×1 =
[
06×246 I6×6

]
x252×1 (30)

and it is obtained due to the applied wrench Wext.

VI. RESULTS

VJM and MSA are implemented to calculate the deflection
due to applied loads in different directions. The robot EE
deflection is found at multiple points in the workspace. Since,
the structure translate along z-axis, deflection calculations are
performed at 30 different points from minimum to maximum
height limits introduced in section II-C.

Fig. 7. Deflection using MSA
due to wrench [100, 0, 0, 0, 0, 0]N

Fig. 8. Deflection using VJM
due to wrench [100, 0, 0, 0, 0, 0]N

Fig. 9. Deflection using MSA
due to wrench [0, 100, 0, 0, 0, 0]N

Fig. 10. Deflection using VJM
due to wrench [0, 100, 0, 0, 0, 0]N

Fig. 11. Deflection using MSA
due to wrench [0, 0, 100, 0, 0, 0]N

Fig. 12. Deflection using VJM
due to wrench [0, 0, 100, 0, 0, 0]N

Fig.7 and Fig.8 show the deflections, using MSA and
VJM approaches respectively, due to 100N load applied in
the x-axis direction. Fig.9 and Fig.10 present the deflections
due to 100N load applied in the y-axis direction, while the
deflections due to 100N load in the z-axis are shown in the
last two figures Fig.11 and Fig.12.

According to the deflections scatter plot analysis, it is no-
table that the deflections computed by VJM approach due to an
external force applied in x-axis and z-axis are not reasonable
comparing to the results obtained from MSA method. This is
because of some limitations of using VJM to model this type of
structures. The idea is when implementing VJM, we extended
the kinematic model for each chain with virtual joints, but
there is no way to introduce passive joints constraints which
connect the two legs such as connections <5,6> and <13,14>
described in the MSA model Fig.6. Without these constraints,
we can justify the huge deflection values which are shown in
Fig.8 and Fig.12.

VII. DISCUSSION

In fact, the classical structure for the VJM approach is a
parallel connection of strictly serial chains. But it is not the
case in the double pantograph structure as the two chains
are connected through the passive joints <5,6> and <13,14>
described in the MSA model Fig.6. Hence, we cannot add the
Cartesian stiffness matrices for the two legs through applying
equation 12 directly. This is the main reason for such a
difference between MSA and VJM results, especially when
the robot EE is subjected to loads in x-axis and z-axis.

The VJM results can be enhanced by deriving the Cartesian
stiffness matrix for the whole system at once. As explained in
[13], the potential energy of the system can be expressed as

E (θ1, θ2) =
1

2

2∑
i=1

θTi Kθiθi (31)

At the equilibrium, this energy must be minimised subjected
to the geometrical constraints. The physical interpretation for
these constraints is described by the passive joints between the
two chains. Mathematically, it can be presented as

t = gi(θi,qi), i = 1, 2 (32)

and it can be introduced in the Lagrange function as follows.

L (θ1, θ2,q1,q2) =
1

2

2∑
i=1

θTi Kθiθi +

2∑
i=1

λT
i (t− gi (θi,qi))

(33)



We can obtain the Cartesian stiffness matrix for the system
including the constraints. This will be implemented in future
work as an approach for improving VJM results.

However, VJM results in sensible deflection values when
applying force in the direction of the axis of rotation, y-axis,
and we can visually notice that both MSA and VJM result in
approximately similar deflection values in this case. Therefore,
a comparison is held in the following section to analyse the
results of both MSA and VJM due to an applied force in y-
axis.

VIII. MSA AND VJM COMPARISON

In this section, a comparison between MSA and VJM
is presented in terms of computation time and deflection
deference due to an applied load in y direction as VJM
limitations do not allows us to compare the deflections due to
forces in x and z directions with the corresponding deflections
from MSA.

Fig. 13. Deflection Average

It is found that the total time elapsed to execute MSA
approach for deflection calculations of 30 points is 2.77
seconds, while 5.77 was recorded as an execution time for
the same points using VJM approach.

Fig.13 represents the scatter plots for both MSA and VJM
due to 100N exerted in y-axis. The maximum deflection is
found at the maximum height that the EE can reach. The
figure shows that 5.2mm is the maximum deflection of VJM
approach, while only 1.3mm is the MSA maximum deflection.
In addition, it shows the average deflection of both approaches.

Fig. 14. Deflection Deference

The deflection deference is depicted in Fig.14 where the
deference percentage at the maximum points is around 76%.
This deference is due to passive constraints between the two
legs which are not applied in the VJM implementation.

IX. CONCLUSION

This paper presents the stiffness analysis of the double
pantograph transmission system. Stiffness modelling is im-
plemented using VJM and MSA techniques to find the EE
deflection at different points in the workspace. After deflection
calculations, deflection scatter plots are built to analyse the
maximum deflection due to 100N force along x, y, z direc-
tions respectively. It was found that VJM method has some
limitations to model this structure, which prevent evaluating
the deflection with an external load in x, z directions. A
comparative analysis is performed to compare both MSA
and VJM computation complexity and deflection deference.
It was noticeable that MSA has less computation cost and no
limitations to model the double pantograph structure compared
to VJM approach.
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