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Abstract—Despite the hydrodynamic lubrication is a self-
controlled process, we designed control systems with the adaptive
PI and a DQN-agent based controllers to minimize the rotor
oscillations amplitude in a conical fluid film bearing. Design of
the bearing allows its axial displacement and thus adjustment
of its average clearance. The tests were performed using a
simulation model in MATLAB software. The simulation model
includes modules of a rigid shaft, a conical bearing, and a control
system. The bearing module is based on numerical solution of the
generalized Reynolds equation and its non-linear approximation
with fully connected neural networks. The obtained results
demonstrate that the both the adaptive PI controller and the
DQN-based controller reduce the rotor vibrations even when
imbalance in the system grows.

Index Terms—active fluid film bearing, conical bearing, simu-
lation modeling, DQN-agent, adaptive PI controller

I. INTRODUCTION

Much of the work in the field of active bearings is associated
with active magnetic bearings [1]–[5]. Control systems in
fluid-film bearings can be applied to solve the following tasks:
vibrations and noise minimization, friction losses reduction,
increase of reliability and service life [6], [7]. Bearings with
built-in (integrated) elements are widely used in practice
[8]–[12]. Built-in elements to a fluid-film bearing structure
allow to change the bearing geometry. Bearing models with
movable pads are presented in articles [8]–[10]. Authors
[13]–[15] deal with active tilting-pad bearings. Z. Cai et al.
[13] and A. Wu et al. [14] manifest improving the bearings
performance due to model based nonlinear controllers. It is
demonstrated that the proposed nonlinear controller requires
less control energy in comparison to a PID controller [14].
Article [15] presents the concept of an active bearing with the
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controlled supply pressure in radial direction by means of PD
controllers.

The bearings control systems often have simple control al-
gorithms. Despite the fairly simple structure of a controller, its
tuning is a complex process. An alternative to the deterministic
approach to control may be an approach based on the analysis
of large experimental data [16], [17]. Deep Q network (DQN)
is a modern and relatively simple discrete reinforcement
learning algorithm [18]–[21]. Tarun [18] applied the DQN
algorithm in control system of a manipulator to control its
motions. J.B. Kim [20] developed transfer learning algorithm
for DQN agent. The algorithm allows to train the agent using
a simulation model instead of a real object. D. Berglund
et al. [21] developed a hydraulic control system based on
DQN agent. So, DQN agents are used in many applications
and they also may be implemented in controllable fluid-film
bearings. DQN agents require relatively small training dataset
in comparison with other deep reinforcement learning agents.

This work presents a fluid film bearing control system
that reducing rotor vibrations. The main control algorithms
are based on the PI controller and reinforcement learning
methods. The conical fluid film bearing is a bearing design
with controllable gap.

II. CONTROLLED SHAFT BEARING SYSTEM CONCEPTION

The hydrodynamic lifting effect depends on many factors
including fluid film thickness. The more the fluid film thick-
ness is, the less the load-carrying capacity is. In turn, the fluid
film thickness in a bearing depends on the eccentricity of the
shaft and the average bearing clearance value [22]. The main
idea of this research is that the average bearing clearance can
be controlled in a conical fluid-film bearing due to the axial
bearing displacement.



The proposed conical bearing system includes the shaft
supported with the coupling at the left-side end and with
the conical bearing at the right-side end (see Fig. 1). This
concept is intended for conducting computational experiments
and testing the ideas for the development of controllers. The
bearing is lubricated with water or oil supplied with pressure
p0. The supply pressure is generated with a pump and can be
controlled with a servo valve. The shafts coupling is not rigid
and can take the load.

In a screw-nut transmission, the nut has a conical surface.
The movement of the nut allows an axial force to be applied
to the face of the bearing. This action causes the bearing to
move. The reactions in the damping element depends on the
movement values and the speed of the bearing.

Bearing position control allows you to adjust the average
gap in the bearing and, as a result, its properties, such as
load capacity, friction torque, etc. The proposed shaft-bearing
system also includes displacement sensors for measuring the
shaft’s right end position in horizontal, vertical and axial
directions, a pressure sensor for measuring the supply pressure,
and a torque sensor for measuring the friction torque.

III. SIMULATION MODELING CONTROLLED
SHAFT-BEARING SYSTEM

The general simulation model of a controlled shaft-bearing
system was designed using the Simscape Multibody module
and the Deep Learning, Reinforcement Learning, and Signal
Processing toolboxes of the MATLAB software.

A. Rotor dynamics.

The shaft-bearing simulation model is shown in Fig. 2.
The Force ANN and Torque ANN blocks approximate the
lubricating layer reaction forces and frictional torque as a
function of the speed and position data of the rotor in the
bearing obtained from the Bearing Joint block. The Imbalance
Force block generates centrifugal force according to the given
value of unbalance. The Damping element Reaction block
calculates the reaction element according to Fig. 1. The End
Face Force block calculates the axial force depending on
the fluid supply pressure. There are stiffness and damping
coefficients in the Coupling block. They were chosen in such
a way that at p0 the shaft displacement was about 0.

The peculiarity of this method of modeling is that the
developed simulation models can be equivalent to real objects.
This allows to perform a long training agents process on a
simulation model without the data from a real object.

B. Hydrodynamic lubrication.

A set of simulation tests was performed to calculate the
shaft trajectories for the following approximation using feed-
forward neural networks [23]. The tests were performed with
the following conditions. The shaft with the mass of 3 kg
rotates at the constant speed of 3000 rpm. The damping ele-
ment stiffness and damping coefficients are K = 40000N/m,
and B = 50N · s/m, respectively. The bearing with taper
angle α = 3 degrees operates with the supply pressure

p0 = 1.2 · 105Pa. The range of change of the bearing
displacement was from −0.5 · 10−6m to 0.7 · 10−6m.

The bearing reaction and the friction torque can be rep-
resented as functions of shaft position in a bearing, shaft
speed [22], and unbalance: F⃗ b = F⃗ b(Xi, Vi,mud), M =
M(Xi, Vi,mud) [24]. Where Xi are coordinate axes, Vi is
velocity in coordinate axes, mud is unbalance. It is a known
fact that artificial neural networks allow nonlinear approxima-
tion (interpolation) with high accuracy [23]. The appropriate
programming tool is the Neural Net Fitting toolbox in the
MATLAB [23]. The two datasets of about 384000 samples
each were collected on the base of simulations to train,
validate and test the networks in proportion of 0.8:0.15:0.05,
respectively.

The approximation error is less than 1. Outside the training
domain the error of the shaft position is 3.5, and for the friction
torque - 3. However, errors increase with the increase of the
shaft axial displacement.

IV. ADAPTIVE PI CONTROLLER MODEL

A. Mathematical model.

The adaptive PI controller is based on a simple PI controller:

uAPI = u(z) = Pe(z) + ItS
e(z)

1− z
(1)

where P and I are the proportional and integral coefficients,
respectively, tS is the sample time, z is a complex number, u
is a output controller signal, e(z) is error control.

The controller has been upgraded for the use in the shaft-
bearing system. The control error of the adaptive PI controller:

eAPI =


|pos| − hmax

0 ifX3 > Xmin
3

∧
pos > hmax

0 ,

0 ifX3 > Xmin
3

∧
p⃗os ≤ hmax

0 ,

|X3| −Xmin
3 ifX3 < Xmin

3 ,
(2)

where pos =
√
X2

1 +X2
2 is eccentricity, hmax

0 is desired
control area in a bearing, Xmin

3 is minimal admissible position
on the X3 axis.

B. Simulation model.

The simulation environment includes a Controller block, an
Environment, a Button, and a Lamp. The Button is intended to
turn the controller on and off. The Lamp notifies the observer
about the output of the oscillations of the rotor beyond the
specified limits (see Fig. 3).

The control error value is input to the controller, which
is calculated by (2). The values h0 and k are used to select
the trusted control area. The Cumulative sum accumulates the
control signal. The control signal of the controller is the force
with which the actuator acts on the bearing. The output signal
of the controller is limited by the limits Lmax and Lmin.

V. DQN AGENT MODEL

A. Mathematical model.

The DQN agent is a reinforcement learning algorithm. At
each time step T the controller (agent) receives feedback from



Fig. 1. Schematic of a shaft-bearing system with an active conical bearing.

Fig. 2. Rotor simulation model.

the system (environment) in the form of a state signal ST , then
takes an action AT and a reward rT in response. It is supposed
that a current state completely characterizes the state of the
system.

The agent trains a critic q(S,A) to estimate the return of
the future reward [25]:

qt = rT + γrT+1 + γ2rT+2 + ..., (3)

where γ is discount.
During the training process it is necessary to achieve the

minimization of the error between the trained function q(S,A)
and the optimal function q∗(S,A) that can be estimated with
the Bellman equation [25]:

q∗T (ST , AT ) = rT + γmax
A

[qT+1(ST+1, AT+1)] (4)

The critic is normally an artificial neural network that
minimizes the loss function while training:

L(Θ(k)) =
1

m

m∑
i=1

(yT − q(ST , AT |Θ(k)))2, (5)

where Θ(k) are the weights of the network, m is the number of
training samples in the minibatch, yT = q∗T is the estimation
for the future reward.

B. Simulation model.

The control system is a DQN agent block with input
parameters of observation, reward and interrupt functions, and
with an output control signal (see Fig. 4) [25].

The control system generates a discrete signal in the range
of pre-set values. This control system uses 5 variants of the
control signal:-1, -0.5, 0.5, 1, 0 N. The control signal at
each time step is added to the accumulated signal value. The
frequency of the control signal is 10 Hz.

VI. RESULTS AND DISCUSSION

Malfunctions of rotary machines can lead to growing oscil-
lations in time. Such phenomena adversely affect the system
and can lead to its failure. The simulation test series were
performed in order to obtain qualitative estimations of the
proposed control systems. Control systems were tested on the
task of minimizing the amplitudes of rotor oscillations in time.

The rotating machine simulation model has the following
parameters: the shaft is 380 mm long and 40 mm in diameter,
the shaft mass is 3 kg and its imbalance 0 ≤ mud ≤ 1−4

kgm. The shaft rotates at a constant speed of 3000 rpm. The
conical bearing, 26 mm wide and 40 / 42.8 mm diameters, is
lubricated with water under controlled supply pressure p0=0.12
MPa. The conical angle is 3 degrees and the bearing maximal
axial displacement is about 1.5 mm. The stiffness and damping
coefficients of the damping element are equal to K=40000
N/m and B=50 Ns/m.

A. Adaptive PI controller.

A simulation environment was created to test the controller.
It was assumed that during the simulation, the amplitude of
rotor oscillations would increase. The growth of the amplitude
was set by the increasing imbalance. The imbalance varied
from 0 to 9.3 · 10−5. The simulation time was 35 s. The
adaptive PI controllers have the following settings: P= 0.0001,



Fig. 3. Adaptive PI controller.

Fig. 4. DQN controller.

I= 0.001, Lmax=0.1, Lmin=-0.1, k=0.8. The critical area of
rotor operation is the radius exceeding 85 µm. At this moment,
the light comes on.

It is assumed that the rotary machine is operating under
fault conditions. This leads to growing amplitudes of rotor
oscillations. After the rotor exits the selected critical area, a
signal light is activated. The operator has the option to turn
on the controller. When the controller is turned on, a control
action is generated. The simulation results are shown in Fig. 5.

Fig. 5 shows the trajectories of the rotor oscillations. It can
be seen that the final amplitude of rotor oscillations under
control is less than if there was no control system. When the
controller is turned on, at about 23 seconds, you can see how
the rotor begins to move towards the geometric center of the
bearing. With this movement, there is a decrease in the size
of the lubricating layer and an increase in the stiffness and
damping coefficients. This leads to a decrease in the amplitude
of the oscillations of the rotor.

B. DQN agent.

The DQN agent training process has the following settings:
the maximum number of iterations is 1000, the maximum

episode duration is 5 s, the learn rate is 0.001, the experience
buffer length is 100000 time steps, the discount factor is
0.85, the mini batch size is 250. The DQN agent network
architecture is shown in Fig. 4. The number of neurons in
hidden layers is [[14, 18, 18]]. At each time step, the DQN
agent receives the reward of +1 if the oscillations is smaller
than 0.9h0. Otherwise, the reward is equal to +0. A penalty
of -50 is applied when the axial displacement of the shaft is
more than 1.5 mm., or smaller -0.7, or the shaft touches the
bearing. The DQN agent was trained at 630 iterations. The
test results are presented on the figure.

The imbalance varied from 2 · 10−5 to 9.4 · 10−5. The
simulation time was 5 s. The figure shows that the final
trajectory of the rotor oscillations with control is smaller than
without control. The resulting path lies very close to the
bearing surface. This is due to the error of the model rework
(see Fig. 6).

VII. CONCLUSIONS

The proposed simulation model of a rotating machine with
the adjustable conical fluid film bearing allow to estimate the
efficiency of control systems based on an adaptive PI controller



Fig. 5. Rotor trajectories when controlled by the Adaptive PI controller. a) with control, b) without control.

Fig. 6. Rotor trajectories when controlled by the DQN-agent. a) with control, b) without control.

and a DQN-agent. The following points can be highlighted
from the simulation results.

1. Oscillations in an adjustable conical fluid-film bearing
can be decreased different control techniques. However, this
is due to a change in the gap and the risk of violation of the
hydrodynamic regime of friction.

2. Intellectual control systems, e.g. based on DQN-agent,
allow to deal with operating limitations of a fluid film bearing
and random changes in their operating conditions easier than
by convenient controllers. Adaptive PI controllers also show
good results in minimization of the friction torque. The more

complex the requirements to the control system are, the more
preferable it is to use intellectual control techniques.

3. The main advantage of a DQN-agent is its ability to
adapt to complex environments and operating conditions. Its
main disadvantage is connected with long training process.
The disadvantage may be partially reduced by using digital
twins of the machines.

4. When comparing the two control methods, the main
points can be identified. The agent shows the best results
in amplitude reduction. This is due to the easier and more
flexible adjustment of the agent and its boundary conditions.



However, such systems require quite a lot of time for training.
In turn, the adaptive PI controller requires setting the boundary
values, which are configured by a person. The choice of the
optimal values of these parameters is quite difficult because it
is impossible to predict the behavior of the system in advance.
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