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Abstract—In this report, we are discussing a new machine
learning architecture Multi-layer preceptron - random forest
regressors pipeline (MLP-RF model) that stacks two ML re-
gressors of different kind to estimate the generated gripping
forces from recorded surface electromyographic activity signals
(EMG) during gripping task. The dataset we adopted to evaluate
our approach consist of sEMG-Force data profile of 24 sEMG
channels placed as 3 bracelets patterns each of 8 electrodes
around the forearm muscles while the forces were measured
by an ergonomic hand dynamometer was developed. For each
finger, the dynamometer features 2 tensiometer sensor points
and analogue linearization circuit. The sEMG signals were then
filtered and preprocessed to formulate the data frame that will
be used to train the proposed ML model. The proposed ML
model is a pipeline of stacking 2 different nature ML models,
a random forest regressor model (RF regressor) and a multiple
layer perceptron artificial neural network (MLP regressor). The
models were stacked together, and the outputs were penalized
by a Ridge regressor to get the best estimation of both models.
The model was evaluated by different metrics, mean squared
error and coefficient of determination or r2 score to improve the
model prediction performance. We tuned the most significant
hyper parameters of each of the MLP-RF model components
using random search algorithm followed by grid search algo-
rithm. Finally, we evaluated our MLP-RF model performance by
comparing the prediction results with the state-of-art Recurrent
Neural Network (RNN) model and the results shows that the
MLP-RF outperforms the state-of-art model.

Index Terms—sEMG signals, Multi-layer perceptron Regres-
sor (MLP), Random Forest regressor (RF), Recurrent Neural
Network (RNN), Robot Grasping Forces, skill transfer learning

I. INTRODUCTION

The need to solve manipulation tasks in multiple applica-
tions in complex environments raised the relevance of skill
transfer learning techniques to teach robotic arms from human
demonstration. different approaches have been raised to play
an essential role for controlling the robotic manipulators by
human demonstrations in order to reduce the time consuming
and traditional programming complexity and to outperform
the limitations of the classical control methods for robotics
to be scalable and generalized for different applications in
complex environments. the most related approaches were
focusing on behavioral cloning (BC) [1], generative adversarial
imitation learning (GAIL) [2] and the inverse reinforcement
learning (IRL) [3]. the high computational complexity and
high dimensional task spaces for the lateral two approaches

affected the efficiency of applying those methodologies on
complex tasks.

In behavioral cloning, a neural network (NN) is suitable
for modeling non-linear data and is able to account for
differences between different conditions. Over the past decade,
several NN-based EMG pattern recognition methods have
been introduced. For example, in [4], a NN background
propagation (BP) is used to perform pattern recognition with
frequency responses. In [5], researchers were able to isolate
four movements of the forearm (flexion, extension, pronation
and supination) using a combination of BPNN and Hopfield
NN. In [6], [7] and others, similar work was done. However,
the commonly used BPNNs in the above studies do not provide
higher learnability and performance, and a large amount of
training data is required as well as a large number of training
iterations.

In this paper, we are proposing a new behavioral cloning
based approach to develop an algorithm that allows building
a policy-based machine learning model that takes the raw
recorded human arm bio-signals for muscles activities as a
state and outputs the appropriate grasping forces to be applied
to let the robot imitate the human demonstrated grasping
skill. The goal of this study is to build the first essential
block of transferring the demonstrated human grasping and
manipulation skills for different complex tasks under complex
environments to teach a robotic manipulator human skills.

The paper is organised as follows, section II represent the
experimental setup of the study, we then implement the Data
preprocessing needed before training the proposed model,
and explain how features were selected to train the proposed
model. Section III represent how we build our proposed model
in details while results and discussions under implementing
our approach and comparing in to the state of the art RNN
approach are illustrated in section IV. Section V holds the final
conclusion.

II. EXPERIMENTAL SETUP

putEMG-Force datasets were used to train and evaluate
our proposed model [8]. Were recorded by Biomedical En-
gineering and Bio-cybernetics Team – Poznan university of
technology, Poland. Databases of surface electromyographic



Fig. 1. an example of the recorded EMG signals from 12 sEMG electrodes
after filtering. The overall 24 filtered recorded EMG signals are the input data
to train the proposed ML model in this article.

Fig. 2. Measured grasping forces from human fingers. These measures are
the output (target) for training the proposed ML model to predict.

activity recorded from forearm. Datasets allows for develop-
ment of algorithms for gesture recognition and grasp force
recognition. Experiment was conducted on 44 participants,
with two repetitions separated by minimum of one week.
sEMG was recorded using a 24-electrode matrix.

the sEMG-Force data profile consists of 24 filtered EMG
signals columns as input (Fig. 1), and 10 recorded Grasping
forces as output to train the proposed ML model (Fig. 2).

A. Data Preprocessing

Data preprocessing is a process of preparing the raw data
and making it suitable for a machine learning model. It is the

first and crucial step while creating a machine learning model.
The recorded raw EMG-Force dataset contains noises, missing
values, because of noticeable artifacts like displacement of
sEMG electrodes during recording, the noise that were caught
by those electrodes...etc [8], i.e., it can not be directly used
for the proposed machine learning models.

Data preprocessing is required tasks for cleaning the data
and making it suitable for the ML model which also increases
the accuracy and efficiency of the ML model.

First of all, we had to calculate the voltage values from
recorded sEMG channels as in Eq. (1) which were stored as
ADC raw values where N is an ADC value.

x = N × 5

212
× 1000

200
[mv] (1)

The calculated voltage values were then filtered using Multi-
notch filter (frequencies = 30, 49.99, 90, 60, 150Hz), Butter
Worth Band-pass filter (lp = 20Hz, hp = 700Hz) as sug-
gested by [8].

the filtered data were cleaned from Nans, infinite values
and outliers to guarantee the consistency and the stability of
the model prediction performance.

the data were rescaled using Standard scaler to bring every
feature in the same footing without any upfront importance and
to make the gradient descent converge much faster in case of
MLP model.

B. Feature Selection.

Feature selection is intended to reduce the number of input
variables (the EMG signals) to those that are believed to be
most useful to a model in order to predict the target variable.
In case of our proposed model where we represent a pipeline
of stacking 2 different regressors, Random Forest and Mluti-
layer perceptron.

Random forest regressor includes ensembles of decision
trees which depend on penalized regression models that select
the features which are higher related to predict the output [9].

For the MLP regressor, we adopted a wrapper feature
selection algorithm [11] as suggested by [10], as they obtained
a significant improvement in the overall results with respect
to learning with the whole set of variables in most of the data
sets tested.

III. BUILDING THE PROPOSED MODEL PIPELINE

Our approach proposes stacking two different regressors,
multi-layer perceptron (MLP) and random forest (RF) re-
gressors, via a meta-regressor, ridge regressor. The individual
regressors were trained separately based on the complete
training set; then, the meta-regressor was fitted based on the
outputs (meta-features) of the individual regressors in the
ensemble. This approach adopts stacking regression technique
to give improved prediction accuracy [12].

A. Reasons behind the proposed model architecture

The reason behind the proposed approach is to add a noval
approach to the bench-marking where the generated gripping



forces can be predicted and estimated from recording the
sEMG human muscle activity signals.

The choice of the random forest model was according to
the advantages behind adopting ensemble models:

• One of the biggest advantages of random forest is its
versatility. It can be used for both regression and clas-
sification tasks, and it’s also easy to view the relative
importance it assigns to the input features.

• Random forest is also a very handy algorithm because
the default hyper-parameters it uses often produce a good
prediction result. Understanding the hyper-parameters is
pretty straightforward, and there’s also not that many of
them.

• The ability to handle the non-linearity of the sEMG
signals as independent predictors of the dependent force
output.

• One of the biggest problems in machine learning is over-
fitting, but most of the time this won’t happen thanks to
the random forest classifier. If there are enough trees in
the forest, the classifier won’t over fit the model.

The choice of the multiple layer perceptron neural network
(MLP) is because of the following advantages:

• Applicability to complex nonlinear problems which
makes it appropriate for our problem statement

• High performance with large input data, in our case, we
need a large amount of input data recorder under different
scenarios to guarantee the generalizability of the proposed
approach.

• Rapidity, where it provides a quick prediction after train-
ing, which is critically important to execute the task in
real time for a robot.

• Consistency, where the same accuracy can be achieved
and guaranteed using smaller amount of data.

• Scalability to different training and prediction scenarios,
different shapes of datasets.

The idea behind an ensemble of models (stacking MLP with
RF regressor in our approach), is to maximize our models’ pre-
dictions from multiple machine learning models by assigning
weights according to their performance. To guarantee giving
the better performing model more say in our final prediction
in an ensemble we use stacking algorithm that learns how to
best combine each of the models in an ensemble to come up
with the best performance.

• An ordinary machine learning model only tries to map
input towards output by generating a relationship func-
tion.

• Stacking acts on one level above the ordinary by learning
the relationship between the prediction result of each of
the ensembled models on out-of-sample predictions and
the actual value.

In most of the papers discussing stacked models, the meta-
model used is often just a simple model such as Linear
Regression for regression tasks and Logistic Regression for
classification tasks. One reason why more complex meta-
models are often not chosen is because there is a much higher

chance that the meta-model may over fit to the predictions
from the base models [13].

For our problem, Ridge Regression [14] works much better
than Linear Regression. This is because the base model’s
predictions are strongly correlated, as they are all trying to
predict the same relationship. Hence, a Linear Regression
fit may cause the final prediction to be highly sensitive to
changes in the data. Therefore, higher variance leads to bad
generalization.

Ridge Regression comes with regularization parameters and
hence is able to deal with the correlation between each base
model’s predictions much better than Linear Regression. This
has been shown empirically to be true; however, a general
proof has yet been devised in any papers.

Going back to the MLP and RF regressors, the architecture
was detected according to tuning hyper-parameters of both
models using random search algorithm [15] followed by grid
search algorithm [16].

The proposed model structure is illustrated in Fig. 3.

B. Random Forest Regressor
Random Forest Regression [17] is a supervised learning

algorithm that uses ensemble learning method for regression.
Ensemble learning method is a technique that combines pre-
dictions from multiple machine learning algorithms to make a
more accurate prediction than a single model.

A Random Forest operates by constructing several decision
trees during training time and outputting the mean of the
classes as the prediction of all the trees (see Fig. 3 Random
Forest Regressor).

To get the best performance of the Random forest regressor,
we tuned the most significant hyper parameters using random
search algorithm [18] followed by grid search algorithm [19].

The main idea of the aforementioned search algorithms as
optimization problem to find the optimal set of model hyper-
parameters by randomly iterating over the the predefined set
of values for each hyper- parameter, train the model with these
values and evaluate the approximation results, finally setting
the hyper-parameters’ values with the best approximation
results. The tuned model hyper parameters are:

• bootstrap: Whether bootstrap samples are used when
building trees. If False, the whole dataset is used to build
each tree.

• Maxdepth: The maximum depth of the tree. If None,
then nodes are expanded until all leaves are pure or until
all leaves contain less than minsamplessplit samples.

• maxfeatures: The number of features to consider when
looking for the best split.

• minsamplessplits: The minimum number of samples
required to split an internal node

• Minsamplesleaf : The minimum number of samples
required to be at a leaf node.

• Nestimators: The number of trees in the forest.

C. Multi-layer perceptron neural networks
A multi-layer perceptron (MLP) [20] is a fully connected

class of feed-forward artificial neural network (ANN). The



Fig. 3. MLP-RF Model Structure

term MLP is used ambiguously, sometimes loosely to mean
any feed-forward ANN, sometimes strictly to refer to networks
composed of multiple layers of perceptron (with threshold
activation). Multi-layer perceptrons are sometimes colloquially
referred to as ”vanilla” neural networks, especially when they
have a single hidden layer.

1) Activation Function: In recent developments of deep
learning the rectifier linear unit (ReLU) is more frequently
used as one of the possible ways to overcome the numerical
problems related to the sigmoids, for that reason we chose to
implement ReLU as an activation function in the dense layers
of our model.

2) MLP model architecture: The MLP model has two main
hyper-parameters that control the architecture or topology of
the network: the number of layers and the number of nodes
in each hidden layer.

The MLP regressor was structured as follows:

• Input Layer: The size of the input layer equals to the
number of sEMG channels, 24 units.

• Hidden Layers: we have 4 hidden dense layers each of
size defined by Eq. (2) , each of them is connected to a
batch normalization and dropout layer, respectably.

• Output Layer: To produce the output variables, we have
out put layer of size 10, the number of grasping forces
to be predicted by the model.

Nhidden =
Ninputsamples

Factor × (Ninputfeatures + 1)
, (2)

where, Factor is an integer factor, Nhidden, the number of
nodes in the hidden layer, Niputsamples, the number of input
data samples and Ninputfeatures, the number of input features,
i.e., the number of sEMG channels.

In addition to the essential dense layers in the MLP regres-
sor, we added two types of special layers, Batch Normalization
layers to accelerate the training process and Dropouts layers to
avoid the over-fitting and under-fitting problems. More details
will be explained later in results and discussion section during
model evaluation illustrations.

IV. RESULTS AND DISCUSSIONS

The MLP-RF model was trained on the proposed dataset
by splitting them into train and test splits (80% for training
and 20% for testing), the specified batch size during MLP
training was set to 500 epochs with an early stopping callback
condition in case of the training process does not improve
the model prediction into 3 consecutive epochs. The specified
batch size was 256 samples to accelerate the training process.
The specified learning rate for the optimizer was set to 0.001
by convention.

The model was evaluated using K-Fold Cross Validation
algorithm [21] to guarantee that the results are stable and
accurate. the model prediction performance was evaluated by
slicing the data frames into 10 equally sized folds. In each
iteration, an arbitrary fold was chosen to validate the prediction
results where the 9 other folds for tuning the model weights.

The problem of over-fitting and under-fitting that is very
common in machine learning models in general required to
improve the model prediction make a variance- bias trade-off.
In case of the RF model, we used random search algorithm for
tuning the mentioned model hyper parameters in section III-B
where the resulted r2 score metrics shows improvement of
performance after finding the appropriate values for the tuned
hyper parameters as illustrated in Table. I.

TABLE I
TUNED HYPER-PARAMETERS FOR RANDOM FOREST REGRESSOR

Random Forest Regressor tuned Hyper parameters
parameters values
bootstrap False: all data is used to train each tree

max depth None: the depth of each tree until reaching the min sample splits
max features ‘sqrt’: the root square of the number of selected features

min samples splits 2
min samples leaf 1

N estimators 200

Table. II illustrates the resulted mean and std values for
r2 score of model prediction performance after K-Fold Cross
Validation using the tuned hyper parameters compared to the
default hyper parameters before tuning.

TABLE II
TUNED HYPER-PARAMETERS FOR RANDOM FOREST REGRESSOR

r2 score for RF prediction before and after hyper parameters tuning
r2 score Tuned hyper parameters Default hyper parameters

Training validation Training Validation
0.95(0.10) 0.75(0.05) 1.00(0.0) (over-fitting) 0.4(0.1)



Fig. 4. model prediction performance evaluation where the red curve
illustrates the validation result compared to the blue one which illustrates
the training result: (a) Model loss before adding dropouts layers; (b) Model
r2 score before adding Dropout layers; (c) Model loss after adding dropouts;
(d) Model r2 score after adding Dropouts

In case of MLP model, the preliminary results showed over-
fitting of the model because of its high complexity compared
to the size of dataset that was used for training, for that reason
the model architecture described in section III-C was modified
by adding special layers called Dropouts, in order to modulate
the model complexity according to the size of input data to
avoid the over-fitting problem. The drop rate was set to 0.2,
i.e., for each batch of the dataset, the layer arbitrarily drops
out 20% of the nodes and keeps 80% of them to reduce the
model complexity over the dataset batch.

The second necessary modification is adding Batch normal-
ization layer after each hidden layer to automatically stan-
dardize the inputs to a hidden dense layer from the previous
one. Batch normalization was implemented, as it has the effect
of dramatically accelerating the training process of a neural
network, and in some cases improves the performance of the
model via a modest regularization effect.

Fig. 4 illustrates the evaluation of model prediction after
adding Dropout layer to improve the model prediction perfor-
mance over the over-fitting and under-fitting problems.

It is clearly from Fig. 4 that the improvement of the
model prediction performance Where both training and val-
idation on unseen dataset gives approximately similar pre-
diction performance (high r2 score and low mean absolute
error). Even of the outperforming of the model prediction
on training scenario in the 1st case over the second one i.e.,
after adding the dropouts, (r2trainingwithoutdropouts = 90% >
r2trainingwithdropouts = 83%), the goal is to reduce the gap
of prediction performance between training and validation
scenarios to consider the model as a stable, consistent and
accurate over different unseen datasets.

Finally , we compare our proposed model to the state-of-
the-art Recurrent model [22] on the represented dataset to
represent the efficiency of using it in grasping force prediction

Fig. 5. RNN model prediction evaluation; loss and score

Fig. 6. Comparing validation results of our model and the RNN state of the
art model

from sEMG signals. Fig. 7 and Fig. 8 illustrate the model
prediction performance of our model and the RNN model
respectively.

We see from Fig. 7 that the results are more likely noisy
which leads us to clarify an important point of this work;
as mentioned before, in each sample step our model predicts
the value of 10 grasping force measurements (2 for each
finger) , for that reason we notice that the resulted prediction
performance is more likely noisy, i.e., in each sample step, the
model tries to predict the most likely correct value for each
of the 10 output forces. Taking the mean of the ten predicted
values from the model, we get the final most likely correct
predicted value and the result will be in the middle which is
90% close to the real measured value.

Recurrent neural networks (RNN) are the state of the
art algorithm for sequential data and are used by Apple’s
Siri and and Google’s voice search. It is the first algorithm
that remembers its input, due to an internal memory, which



Fig. 7. MLP model prediction performance results for the 10 grasping forces;
Ground truth data (GT) is in blue curve, while the predictions (Pred) are in
red scatters; MSE: the mean squared error for each force prediction.

makes it perfectly suited for machine learning problems that
involve sequential data. The RNN internal memory comes
from Long-Short Term Memory layers (LSTM) [23] that make
information cycle through a loop. When it makes a decision, it
considers the current input and also what it has learned from
the inputs it received previously.

Comparing the evaluation metrics; r2 score (Fig. 5 and
Fig. 4-b), and the mean squared error illustrated in Fig. 6 for
both models, we find that our proposed model outperforms the
state-of-the-art RNN model for predicting the grasping forces
from recorded sEMG signals and can be adopted for further
development of designing a skill transfer policy to teach a
robot the human skills by demonstrating the applied forces
and trajectories.

V. CONCLUSION

In this study, we discussed an implementation of a proposed
stacking regressor of 2 different in nature nonlinear regressors
Random forest regressor and multi-layer perceptron neural
network regressor to estimate the generated grasping forces
from human arm muscle activities records. the estimated
grasping forces can be then transferred to a robotic manipu-
lator to reproduce the same human grasping skills. the results
showed the out performance of our proposed model over the
RNN state-of-the-art model that treats the biological muscle
activities signals as a time series signals and have a higher
complexity, memory and computation cost over the proposed
MLP-RF model. the results conclude the efficiency of adopting
our model in related application.

Fig. 8. RNN model prediction performance results for the 10 grasping forces;
Ground truth data (GT) is in blue curve, while the predictions (Pred) are in
red scatters; MSE: the mean squared error for each force prediction.
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