
Preliminary study: Exploring GitHub repository
metrics

Guzel Safiullina
Innopolis University
Innopolis, Russia

gu.safiullina@innopolis.university

Aidar Gumerov
Innopolis University
Innopolis, Russia

a.gumerov@innopolis.university

Gcinizwe Dlamini
Innopolis University
Innopolis, Russia

g.dlamini@innopolis.university

Giancarlo Succi
Innopolis University
Innopolis, Russia

g.succi@innopolis.ru

Abstract—GitHub is the largest platform for code storage and
development and is currently the source of data on software
projects. It is important to understand how repository properties
affect code quality, project popularity, and find dependencies
between different repository metrics. In this paper, a qualitative
and quantitative analysis of more than 700 repositories and 81
metrics was conducted. Descriptive statistics, statistical tests, and
correlation analysis were investigated. An analysis of the resulting
descriptive statistics was conducted. The correlation analysis
highlighted strongly correlated metrics and provided a theoretical
justification for the dependencies obtained. In addition, clustering
of repositories was performed and discussion of obtained groups
of repositories is presented.

Index Terms—GitHub, open-source, clustering, correlation
analysis, statistics

I. INTRODUCTION

There are now many teams working on open source software
development. Software projects differ in scale, where one
person or a large team can work on one project. Projects
can also be either commercial or social. GitHub is the largest
portal where developers of many projects interact. In addition
GitHub serves as a knowledge and code base which for years
has been a source of success for IT companies starting from
start-ups to giant companies [27]. GitHub has tens of millions
of registered users, and the number of repositories exceeds
two hundred million [10].

Harnessing the knowledge GitHub presents is crucial for
IT businesses for reasons such determining project maintain-
ability, adoption of software development practices used by
successful open source projects [7], [13], [18]. Open source
projects are an effective way to develop software. Therefore,
it is important to understand how the metrics that characterize
a repository affect the quality of the code, its popularity, and
what insights can be gained from this data [4], [31].

For years researchers have developed and proposed ap-
proaches for analysing open source projects to formulate
strategies that propel software projects to success and high
quality [35] [31].To assess code quality, a defect density
calculation is used, which can be predicted based on repository
metrics such as number of authors, number of downloads, and
so on [22], [29].

Over the recent years researchers have proposed various
approaches on mining knowledge from GitHub repositories
metrics [32], [33]. However understanding the essence and

the relationship between the metrics has remained a complex
task and open area of research. Statistical and mathematical
modelling approaches which serves as bases for most machine
learning approaches for learning complex underlying patterns
of data have been proposed and there is still a room for
improvement [21]. For example clustering of software projects
using selected metrics reveals different insights since the
metrics changes with time.

This paper contains a qualitative and quantitative study of
GitHub repository metrics. The main purpose of the paper is
to establish relationship between the metrics of the project,
to study the distribution of the data and get possible insights
from the data. Secondly, our goal is to cluster repositories
by their scale and purpose. For example, a learning project
is likely to contain a much smaller number of commits
and participants compared to commercial projects of large
companies. Our approach is mainly based on fundamentals
of statistical methods, correlation analysis and clustering.

The remainder of this paper is organized as follows. The
related work is presented in section II. Section III provides
the methodology which are the methods used in the project.
Section IV presents the results section presents overview of
extracted data, while section V discusses the results. Lastly
section VI presents the conclusion and future directions.

II. RELATED WORK

The challenge of analysing and extracting knowledge from
software project metrics has has existed for a long time and
the software engineering research community has proposed
both statistical and machine learning models to address the
challenge [15], [19]. As GitHub has grown drastically over
the years, the challenge has escalated and now comes under
the scope of Big data.

Kalliamvakou et al. [14] in their study conducted a quan-
titative and qualitative analysis aimed at understanding the
characteristics of the repositories in GitHub and how users take
advantage of GitHub’s main features. As a result the authors
concluded that the vast majority of repositories are individual
projects and Github over ther years has become one of valuable
source for knowledge in the domain of sotware development.
Analyzing Github repository statistics is an important tool
for many different application tasks. One of these tasks is to
predict the popularity of the project.

Borges et al. [5] proposed an approach to predict popularity
of repositories. The authors used data on the 5000 most
popular repositories, cluster it and predict the number of
project stars in each cluster. With similar objective Ren et
al. [24] proposed an approach for predicting the popularity of
repositories using data on the behavior of stargazers. A study
of the statistics of more than 2,000 repositories mentioned in
scientific publications has shown that the number of stars and
forks is distributed according to a power law [9]. However
github stars are not a sufficient indicator of a software health.

Another type of task is clustering repositories on the
GitHub. In this paper, the authors performed a hierarchical
clustering of GitHub repositories based on keywords [34].
Also, the study of repository metrics can be useful in studying
trends in a particular area. For example, the authors of this
article collected information about COVID19 repositories and
analyzed their characteristics [30]. They have analyzed the
number of repositories, the time-dependence of the number of
repositories, the topic, and the characteristics of development.

In a study conducted by [6], the researchers studied the
effect of test driven development in GitHub. The effect of this
approach on such metrics as commit velocity and number of
bug-fixing commits was studied. Repository statistics (forks
and commits) can be used to cluster repositories and identify
vulnerable groups [16]. Putting different metrics together and
gaining insights to improve software development process or
product still remains an area of research.

In light of the aforementioned proposed approaches, we
propose a statistical approach and machine learning based ap-
proach to analyse GitHub repositories and extract knowledge
which could be useful in improving the quality of software
product of development process.

III. METHODOLOGY

Our proposed approach to analyse GitHub repositories is
presented in Fig. 1. It contains five main stages. The following
subsections outlines the details about each stage.

A. Data extraction and preprocessing

Dataset includes information about public Github reposito-
ries. The data used in this paper is retrieved through GitHub
Repository Statistics API. Dataframe contains 83 metrics. The
study includes a variety of information about the dataset. A
detailed description is provided in the list: commits, contribu-
tors, forks, issues, repo, pulls, releases, stars, workflow runs.
As part of Data preprocessing we remove duplicates and Nan-
values.

B. Exploratory data analysis

We will visualize data using dimensionality reduction.
1) Dimensionality reduction: To find the most informative

features. Principal Component Analysis (PCA) [1] will be
applied. PCA allows to extract most important information
and this method is useful for data visualization.

Fig. 1. Our proposed approach

C. Simple statistics

To define distribution properties the following statistics will
be calculated: mean, standart deviation, median, mode, 25%-
and 75% quantile [11].

D. Distribution test

1) Normality test: The Kolmogorov Smirnov test is a statis-
tical nonparametric test that is applied to continuous univariate
distributions, and which determines whether a given sample
belongs to a particular distribution [23]. The Kolmogorov
Smirnov test is also used to check if two samples belong to the
same distribution. The advantage of this test is that different
distribution laws can be chosen as a reference distribution,
including normal distribution, Poisson distribution, exponen-
tial distribution, and others [26]. Test data for normality with
Kolmogorov-Smirnov test: H0 the data is normally distributed,
Hα - data is not normal.

E. Confidence interval

Confidence interval is a range by which you can estimate an
unknown value. The confidence interval is calculated at a cer-
tain level of confidence. The most commonly used confidence
level is 95%, but other values can also be used [8]. In research,
confidence intervals allow us to estimate the likely range of
values of a parameter for the entire population. Confidence
intervals, in turn, allow you to estimate the true average value
of the general population [12]. Using the bootstrapping tech-
nology, we generate 100 datasets (randomly select repositories
from the initial retrieved data). Let’s define the size such
samples as 10% of the main population. Now, for each such
sample, we calculate the statistics that were calculated for the
population. After we calculate 95% confidence interval.

F. Correlation analysis

To define linear and non-linear dependencies between fea-
tures correlational matrices will be calculated [11].

1) Pearson correlation: Pearson correlation to find linear
dependencies in data [3]

r =
cov(X,Y)√

V ar(X)V ar(Y)
(1)

2) Spearsman correlation: Spearsman Correlation. Data
should be normally distributed . [20]

rP =
cov(RX , RY)√

V ar(RX)V ar(RY)
(2)

where is RXi
- is rank of this observation

G. Clustering

We can distinct several groups of projects: study projects,
empty projects, large-scale business projects, etc. To formalize
this we can apply different clustering methods. First and
simplest one is k-means algorithm [17].

1) K-means algorithm: The k-means algorithm belongs to
the group of unsupervised learning algorithms. This algorithm
allows you to allocate different groups for data that does
not have class labels. The algorithm inputs the number of
clusters and then k-means minimizes the function of the sum
of squares of distances from a point to the center of the cluster.
The disadvantage of the algorithm is that you need to know
the number of clusters in advance. Therefore, the number of
clusters can be determined using the Elbow method.

2) DBSCAN: DBSCAN - Density-Based Spatial Clustering
of Applications with Noise is another clustering algorithm that
works with unlabeled data [25]. The algorithm is based on
clustering based on the criterion of density of located points.
This algorithm is effective when working with data that are
homogeneous in density. The principle of the algorithm is
as follows: the algorithm finds clusters with high density,
with clusters separated by areas with low density. As a
result, the formed clusters can take any shape, in contrast
to k-means, where clusters must have a convex shape. The
DBSCAN algorithm also allows the detection of noisy points
that do not belong to any cluster [2]. In this case, real data
sets contain clusters of different density with boundaries of
different degrees of fuzziness. In conditions where the density
of some boundaries between clusters is greater than or equal
to the density of some isolated clusters, we have to sacrifice
something in the efficiency of the algorithm.

IV. RESULTS

A. Data extraction and preprocessing

We have collected data 764 repositories. Duplicates were
removed. Further, where the missing values occupy less than
30%, we fill in based on the neighboring values - (take the
average or zero, for example, sometimes empty commit cells
do not mean the absence of information, but the fact that there
were no commits). Also we exclude 2 metrics (’commits avg
per day’) which contains only zero values. Total number of

repositories left after preprocessing was 732 and number of
metrics was 81.

B. Exploratory Data analysis

We have built histograms for each metric, however, not all
of them are informative. Also we applied PCA and have found
that 20 features contains 90 % of information. We visualized
the data after dimensionality reduction using PCA.

C. Calculating simple statistics and confidence intervals

Mean, median, mode, minimum, maximum, standart devi-
ation were calculated. Thus, we determine the quantiles of
t-statistics for the population and so on for 100 samples in
order to simply assess how close these intervals are. Apply
bootstraping to estimate means. Bootstrapping was applied
and mean for each feature was estimated by 25% and 75%
quantiles. For all metrics, the standard deviation is much larger
than the mean. For all metrics median is smaller than mean.
This fact is due to skewness of data to zero. For 66 out of 81
metrics mode is equal to zero, for 14 of them mode is equal to
1 or 2 and for ”repo age days” mode equals to 482. Our data
contain a large number of observations for which the metrics
are close to zero, but several observations are large projects
for which these metrics are much larger than zero. This creates
a situation in which the mean, mode, and median are close to
or equal to 0, and the standard deviation is very large. All of
this suggests that the data are not normally distributed.

D. Test data for normality

After applying Kolmogorov-Smirnov test we found out that
data us not normally distributed, as a result we can not assume
that Pearson correlation coefficient does not belong to T-
distribution.

E. Correlational analysis

To find linear relationship Pearson correlation coefficients
r was first calculated. After we have calculated Spearsman
correlation matrix. We choose 22 pairs with correlation coef-
ficient (rs) bigger than threshold (r > 0.8) and explain their
dependence.

0 2000 4000 6000 8000 10000 12000 14000 16000
0

1

2

3

4

5

6

7

Fig. 2. Forks count vs forks average per day rxy = 0.96, rSpearman = 0.1

0 25000 50000 75000 100000125000150000175000200000
0

20000

40000

60000

80000

100000

120000

140000

Fig. 3. Commits average versus contributors top

0 2000 4000 6000 8000 10000 12000 14000 16000
0

5000

10000

15000

20000

25000

Fig. 4. Releases average versus stars max per day

After calculating the variance it was found that 40 variables
explain 90% of all information.

This is due to the fact that we have 20 metrics highly
correlated with each other in this way - they are linearly related
and can be expressed through each other.

V. DISCUSSION

This section presents the discussion of the obtained results
based on our proposed approach in section III

A. Correlational analysis

We have found pairs for which Spearsman correlation
coefficient is significantly distinct from Pearson correlation
coefficient (|rs − r| > ε). Let’s look at the dependence of
these data on each other where the difference is very large:
ε > 0.4 . When analyzing such data, we saw that at least one
of these two metrics within a pair contains 90% zeros. Then
the small Spearman coefficient is explained by a very large
randomness near zero.

To estimate correlational coefficients bootstrapping was
applied. First of all, we decided on the size of the samples
(20) and their number. After generating these datasets, we
calculated how many of them fit the null hypothesis and got
70% of the total. After that we will analyze the remaining

30% and what is wrong with them, because it is possible that
outliers are contained in them. In the following graph, we have
shown a histogram for one pair of highly correlated metrics
to see how many samples contain strange data.

As far as can be estimated, very few of the ”strange”
samples are located near the 0.8 trash hold. In this case,
many coefficients lying near zero can be considered as an
anomaly. for such anomalies, we also calculate the statistics
and compare them with their counterparts from the population.

On the graphs, we see that for all such pairs there is
one special point - outlier. So you need to check how the
data behaves without it. We also recalculated the Pearson
coefficient without outliers and predicted that it for features
began to fall for some pairs of metrics by 40-50%. Thus, a
linear dependence is no longer necessary, because only one
point out of 700 corrects the dependencies so significantly.
This observation is project is helm/charts1. It is a package
manager for Kubernetes. This project has more than 17000
forks and more than 3400 contributors.

As a result, we also analyzed several pairs of metrics that
have the highest correlation coefficient. Their list is presented
below. Pairs with the highest Spearman correlation coefficient
(correlation coefficient higher than 0.8):

• Commits days since first - Repository days.
The longer the life of the project, the longer time from
first commit

• Commits average per day - Commits maximum per day.
Since the average of a set depends on the maximum
element of this set linearly, it is obvious that they are
strongly correlated

• Contributors top average commits - Contributors top
average participation weeks
Also assume a linear dependence - the more contributors
per week, the more commits they will make.

• Forks count - Repository network members.
When the command is expanded, the number of forks for
parallelizing the process increases.

• Issues total comments - Issues count.
The more questions, the more commentators to them.

• Repository workflows - Workflow runs count.
It is almost same.

• Repository watchers - Stars count.
The more people who follow the project, the more
positive feedback (stars) the project will receive.

• Pulls total lines added - Pulls total lines removed.
As the size of the project grows and the number of lines
of code increases, the possible number of errors and the
number of deleted lines of code grows accordingly.

• Releases count - Releases tags.
The metric data represent practically the same thing and
therefore have a correlation coefficient of 1.

• Workflow average duration - Workflow average failure
duration.

1https://github.com/helm/charts

The work process includes failure - when the set itself
grows uniformly, then the subset of this set also grows
and vice versa

B. Clustering

1) K-means: Visualization on the two main components is
presented on Figure 5.

0 5 10 15 20 25 30 35

−10

0

10

20

30

Fig. 5. Clusters after applying k-means algorithm

To find number of clusters we implement elbow method but
figure does not show concrete number of clusters. So we have
applied k-means with number of clusters k equals 2. Using
the ”elbow method”, after the second point, the slope of the
straight line connecting all points practically does not change.
Thus it is not entirely clear justified the number of clusters
equal to two.

2) DBSCAN: Using the DBSCAN algorithms, we did clus-
tering and found that basically all points belong to two general
classes and only 6% are outliers. We emphasize that this is a
projection of data onto two main vectors and in n-dimensional
space the picture looks different on Figure 6.

0 5 10 15 20 25 30 35

−10

0

10

20

30

Fig. 6. Clusters with DBSCAN

C. Outliers and main cluster

1) ’Outliers’: Observation which were determined as out-
liers by DBSCAN are the most interesting for us. We detected
58 outliers. It is not correct to call this observations outliers,
because all metrics are collected correctly and there is no

incorrect measurements. All this observations are big open-
source projects. We can see that this list includes projects from
Microsoft and Azure.

We have calculated statistics again, and for this 58 samples
standard deviation is now comparable with mean. We applied
k-means (number of clusters was determined by elbow method
[28]) and DBSCAN clustering on this observations. These
algorithms have shown the same results. Visualization is
presented on Figure 7.

−6 −4 −2 0 2 4 6 8

−6

−4

−2

0

2

4

6

8

Fig. 7. Clustering of big projects

2) Main cluster: We have calculated statistics again for
the rest of projects and standard deviation is now smaller
or comparable with mean. We applied k-means clustering.
Number of clusters is determined by elbow method and equals
to 3. Results are presented on Figure 8.

0 5 10 15 20 25

−15

−10

−5

0

5

10

15

20

Fig. 8. Clustering on the rest of projects

VI. CONCLUSION

With the increasing value of knowledge presented by
GitHub and one of the most important online source of
software artifacts. We present a quantitative and qualitative
analysis of GitHub repositories based on software project
metrics. Firstly, we retrieved software metrics for 732 unique
repositories. For each metric we calculated the main statis-
tics: mean, median, mode standard deviation, 25%- and 75%
quantiles. Overall metrics retrieved were 83 in total. Using
the Kolmogorov-Smirnov test, we found out that the retrieved

metrics data is not normally distributed. Next we performed
a correlation analysis. Based on the nature of the data we
used to measure the correlation within the metrics. The in-
sights from the correlations calculations was discussed in the
context of software development context. After the test for
normality and correlation measurements were performed, we
clustered the data using two clustering methods : k-means and
DBSCAN. Two clusters were obtained, one containing most
of the repositories, namely individual projects of one owner,
the second cluster contains almost all large projects included
in the dataset. The number of clusters was determined using
the elbow method. For the future we are planning to extend
our study by increasing the number of projects to analyse and
include code metrics to the list of metrics to analyse.

REFERENCES

[1] Hervé Abdi and Lynne J Williams. Principal component analysis. Wiley
interdisciplinary reviews: computational statistics, 2(4):433–459, 2010.

[2] Tariq Ali, Sohail Asghar, and Naseer Ahmed Sajid. Critical analysis of
dbscan variations. In 2010 international conference on information and
emerging technologies, pages 1–6. IEEE, 2010.

[3] Jacob Benesty, Jingdong Chen, Yiteng Huang, and Israel Cohen. Pearson
correlation coefficient. In Noise reduction in speech processing, pages
1–4. Springer, 2009.

[4] Hudson Borges, Andre Hora, and Marco Tulio Valente. Predicting
the popularity of github repositories. In Proceedings of the The 12th
International Conference on Predictive Models and Data Analytics in
Software Engineering, pages 1–10, 2016.

[5] Hudson Borges, Andre Hora, and Marco Tulio Valente. Predicting the
popularity of github repositories. PROMISE 2016, New York, NY, USA,
2016. Association for Computing Machinery.

[6] Neil C Borle, Meysam Feghhi, Eleni Stroulia, Russell Greiner, and
Abram Hindle. Analyzing the effects of test driven development in
github. Empirical Software Engineering, 23(4):1931–1958, 2018.

[7] Fragkiskos Chatziasimidis and Ioannis Stamelos. Data collection and
analysis of github repositories and users. In 2015 6th International Con-
ference on Information, Intelligence, Systems and Applications (IISA),
pages 1–6. IEEE, 2015.

[8] Frederik Michel Dekking, Cornelis Kraaikamp, Hendrik Paul Lopuhaä,
and Ludolf Erwin Meester. Confidence intervals for the mean, pages
341–360. Springer London, London, 2005.

[9] Michael Färber. Analyzing the GitHub Repositories of Research Papers,
page 491–492. Association for Computing Machinery, New York, NY,
USA, 2020.

[10] github. Github, 2020.
[11] S.C. Gupta and V.K. Kapoor. Fundamentals of Mathematical Statistics.

Mathematical Sciences. Sultan Chand & Sons, 2020.
[12] Barbara Illowsky and Susan Dean. Introductory statistics. 2018.
[13] Abin Joy, Senthilkumar Thangavelu, and Amalendu Jyotishi. Perfor-

mance of github open-source software project: An empirical analysis.
01 2018.

[14] Eirini Kalliamvakou, Georgios Gousios, Kelly Blincoe, Leif Singer,
Daniel M. German, and Daniela Damian. The promises and perils
of mining github. In Proceedings of the 11th Working Conference on
Mining Software Repositories, MSR 2014, page 92–101, New York, NY,
USA, 2014. Association for Computing Machinery.

[15] Eirini Kalliamvakou, Georgios Gousios, Kelly Blincoe, Leif Singer,
Daniel M German, and Daniela Damian. An in-depth study of the
promises and perils of mining github. Empirical Software Engineering,
21(5):2035–2071, 2016.

[16] Ben Lazarine, Sagar Samtani, Mark Patton, Hongyi Zhu, Steven Ullman,
Benjamin Ampel, and Hsinchun Chen. Identifying vulnerable github
repositories and users in scientific cyberinfrastructure: An unsupervised
graph embedding approach. In 2020 IEEE International Conference on
Intelligence and Security Informatics (ISI), pages 1–6, 2020.

[17] Aristidis Likas, Nikos Vlassis, and Jakob J Verbeek. The global k-means
clustering algorithm. Pattern recognition, 36(2):451–461, 2003.

[18] Nora McDonald and Sean Goggins. Performance and participation in
open source software on github. In CHI’13 extended abstracts on human
factors in computing systems, pages 139–144. 2013.

[19] Nuthan Munaiah, Steven Kroh, Craig Cabrey, and Meiyappan Nagappan.
Curating github for engineered software projects. Empirical Software
Engineering, 22(6):3219–3253, 2017.

[20] Leann Myers and Maria J Sirois. Spearman correlation coefficients,
differences between. Encyclopedia of statistical sciences, 12, 2004.

[21] Marco Ortu, Giuseppe Destefanis, Daniel Graziotin, Michele Marchesi,
and Roberto Tonelli. How do you propose your code changes? empirical
analysis of affect metrics of pull requests on github. IEEE Access,
8:110897–110907, 2020.

[22] Cobra Rahmani and Deepak Khazanchi. A study on defect density of
open source software. In 2010 IEEE/ACIS 9th International Conference
on Computer and Information Science, pages 679–683, 2010.

[23] Nornadiah Mohd Razali, Yap Bee Wah, et al. Power comparisons of
shapiro-wilk, kolmogorov-smirnov, lilliefors and anderson-darling tests.
Journal of statistical modeling and analytics, 2(1):21–33, 2011.

[24] Leiming Ren, Shimin Shan, Xiujuan Xu, and Yu Liu. Starin: An
approach to predict the popularity of github repository. In International
Conference of Pioneering Computer Scientists, Engineers and Educa-
tors, pages 258–273. Springer, 2020.

[25] Erich Schubert, Jörg Sander, Martin Ester, Hans Peter Kriegel, and
Xiaowei Xu. Dbscan revisited, revisited: why and how you should
(still) use dbscan. ACM Transactions on Database Systems (TODS),
42(3):1–21, 2017.

[26] Michael A Stephens. Edf statistics for goodness of fit and some compar-
isons. Journal of the American statistical Association, 69(347):730–737,
1974.

[27] Nate Swanner. Big tech controls many major open source projects. is
that a problem?, Aug 2019.

[28] M A Syakur, B K Khotimah, E M S Rochman, and B D Satoto. Inte-
gration k-means clustering method and elbow method for identification
of the best customer profile cluster. IOP Conference Series: Materials
Science and Engineering, 336:012017, apr 2018.

[29] Dinesh Verma and Shishir Kumar. Prediction of defect density for open
source software using repository metrics. Journal of Web Engineering,
pages 293–310, 2017.

[30] Liu Wang, Ruiqing Li, Jiaxin Zhu, Guangdong Bai, and Haoyu Wang.
A large-scale empirical study of covid-19 themed github repositories.
In 2021 IEEE 45th Annual Computers, Software, and Applications
Conference (COMPSAC), pages 914–923, 2021.

[31] Simon Weber and Jiebo Luo. What makes an open source code popular
on git hub? In 2014 IEEE International Conference on Data Mining
Workshop, pages 851–855, 2014.

[32] Yunxiang Xiong, Zhangyuan Meng, Beijun Shen, and Wei Yin. Mining
developer behavior across github and stackoverflow. In SEKE, pages
578–583, 2017.

[33] Yue Yu, Gang Yin, Huaimin Wang, and Tao Wang. Exploring the
patterns of social behavior in github. In Proceedings of the 1st
international workshop on crowd-based software development methods
and technologies, pages 31–36, 2014.

[34] Yu Zhang, Frank F. Xu, Sha Li, Yu Meng, Xuan Wang, Qi Li, and
Jiawei Han. Higitclass: Keyword-driven hierarchical classification of
github repositories. In 2019 IEEE International Conference on Data
Mining (ICDM), pages 876–885, 2019.

[35] Yangyang Zhao, Alexander Serebrenik, Yuming Zhou, Vladimir Filkov,
and Bogdan Vasilescu. The impact of continuous integration on other
software development practices: a large-scale empirical study. In
2017 32nd IEEE/ACM International Conference on Automated Software
Engineering (ASE), pages 60–71. IEEE, 2017.

