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Abstract - This paper investigates the problem of object detection 

for real-time agents’ navigation using embedded systems. In real-

world problems, a compromise between accuracy and speed must be 

found. In this paper, we consider a description of the architecture of 

different object detection algorithms, such as R-CNN and YOLO, to 

compare them on different variants of embedded systems using 

different datasets. As a result, we provide a trade-off study based on 

accuracy and speed for different object detection algorithms to 

choose the appropriate one depending on the specific application 

task. 

Index Terms – Robot navigation, object detection, embedded 

systems, YOLO algorithms, R-CNN algorithms, object semantics. 

I. INTRODUCTION 

Target detection has attracted significant attention for 

autonomous robots due to its notable benefits and recent 

progress [1]. Target tracking can be used in autonomous 

vehicles for the development of guidance systems [2]. 

Pedestrian detection [3], dynamic vehicle detection, and 

obstacle detection [4] can improve the features of the guiding 

assistance system. Object recognition technologies for self-

driving vehicles have strict requirements in terms of accuracy, 

unambiguousness, robustness, space demand, and costs [5]. 

Similarly, object recognition and tracking features in robots can 

assist in wheeled robots navigation and obstacle avoidance. 

Visual navigation systems in service robots can be used in 

many applications, they are typically deployed in retail, 

healthcare, warehouse. Others are deployed in more rugged 

settings, such as in space, defense, agricultural applications, 

demolition, and for automating dangerous or laborious tasks. 

Previously, target detection in robot systems mostly used 

vision-based target finding algorithms. For example, Raspberry 

Pi and OpenCV were used to find a target [6]. However, 

computer vision techniques might provide less accurate results 

and have issues in predicting unknown future data. On the other 

hand, machine learning target-detection algorithms can provide 

a very accurate result, and the model can make predictions from 

unknown future data. Visual recognition systems involving 

image classification, localization, and segmentation have 

accomplished extraordinary research contributions [7]. 

Moreover, deep learning has made great progress in solving 

issues in the fields of computer vision, image and video 

processing, and multimedia [8]. Because of the critical 

advancements in neural networks, particularly deep learning 

[9], these visual recognition systems have shown great potential 

in target tracking. 

On-board and off-board ground-based systems are 

promising platforms in this context. Most of the time, the robot 

system cannot be equipped with heavy devices due to weight 

and power consumption. Therefore, off-board ground systems 

play a vital role. In some cases, communication with the ground 

station could be impossible due to distance or coverage. An on-

board system that can support both weight and power 

consumption would be a perfect framework for such a situation 

and environment. 

In the present study, we compared various object detection 

algorithms and different embedded systems to execute those 

algorithms, based on the comparison we will choose the best 

algorithm with the best embedded system for object detection 

in a robot system in real time. 

II. IMPLEMENTED OBJECT DETECTION ALGORITHM IN 

ROBOT SYSTEM 

A. Region Proposal Based Framework 

The region proposal-based framework, is a two-step 

process, matches the attentional mechanism of human brain to 

some extent, which gives a coarse scan of the whole scenario 

firstly and then focuses on regions of interest [10]. 

1) Region with CNN (R-CNN): The original paper “Rich 

feature hierarchies for accurate object detection and semantic 

segmentation” [11] elaborates one of the first breakthroughs of 

the use of CNNs in an object detection system called the ‘R-

CNN’ or ‘Regions with CNN’ that had a much higher object 

detection performance than other popular methods at the time. 

R-CNN generates features in a region using CNN. The 

algorithm proposed in [11] employed selective search [12] to 

extract just 2000 regions from the entire input image. These 

regions are referred to as region proposals RoI and they have a 

high probability of containing an object. Therefore, instead of 

classifying big number of regions, just 2000 regions can be 

worked with as in Fig.1. 

Due to the requirement of CNNs to have a fixed input 

image size, the proposed RoIs are then warped to have a fixed 

size, then they are fed to a convolution neural network that will 

extract features from each candidate region. 

A classifier like a support vector machine (SVM) [13], [14] will 

classify the presence of the object within that candidate region 

proposal based on the extracted features from the previous step. 

In addition to predicting the presence of an object within 

the region proposals, the algorithm also has a bounding-box 

regressor that predicts four values which are the location and 



size of the bounding box that surrounds the object, then filtering 

with a greedy non-maximum suppression (NMS) [15], [16] to 

produce final bounding boxes. R-CNN architecture is shown in 

Fig. 1. 

 
Fig. 1 R-CNN Architecture. 

 

Limitations of R-CNN. It still takes a huge amount of time 

to train the network as it would have to classify 2000 region 

proposals per image, it cannot be implemented real time as it 

takes around 47 seconds for each test image and the selective 

search algorithm is a fixed algorithm. Therefore, no learning is 

happening at that stage. This could lead to the generation of bad 

candidate region proposals. 

2) Fast R-CNN: R-CNN model took a huge amount of time 

to train the network. Girshick et al. [17] built another faster 

object detection algorithm known as Fast R-CNN to circumvent 

this problem. Instead of starting with the regions proposal 

module and then using the feature extraction module, like R-

CNN, Fast-RCNN proposes that we apply the CNN feature 

extractor first to the entire input image and then propose 

regions. This way, we run only one ConvNet over the entire 

image instead of 2,000 ConvNets over 2,000 overlapping 

regions. And the region proposals are generated using other 

algorithms algorithm such as Edge Boxes [18]. 

The ConvNet has an extended job to do the classification 

part as well, this has done by replacing the traditional SVM 

machine learning algorithm [13], [14] with a softmax layer. 

This way, single model will perform both tasks: feature 

extraction and object classification. Fast R-CNN architecture is 

shown in Fig. 2. 

Limitations of Fast R-CNN. Still requires candidate 

regions as input and the running time of Fast R-CNN is reduced, 

exposing region proposal computation as a bottleneck. 

3) Faster R-CNN: Faster R-CNN is the third iteration of the 

R-CNN family, developed in 2016 by Shaoqing Ren et al [19]. 

Similar to Fast R-CNN, the image is provided as an input to a 

convolutional network that provides a convolutional feature 

map. Instead of using a selective search algorithm on the feature 

map to identify the region proposals, a region proposal network 

(RPN) is used to predict the region proposals as part of the 

training process. 

The architecture of Faster R-CNN can be described using 

two main networks, first network is region proposal network 

(RPN)—Selective search is replaced by a ConvNet that 

proposes RoIs from the last feature maps of the feature extractor 

to be considered for investigation where the RPN has two 

outputs, the objectness score (object or no object) and the box 

location. Second network consists of the typical components of 

Fast R-CNN. Faster R-CNN architecture is shown in Fig. 3. 

 
Fig. 2 Fast R-CNN Architecture. 

 

 

 
Fig. 3 Faster R-CNN Architecture. 

 

4) Mask R-CNN: Mask R-CNN is an extended version of 

faster R-CNN for pixel level segmentation. Mask R-CNN [20] 

works by adding a branch for predicting segmentation masks 

on each Region of Interest (RoI), in parallel with the existing 

branch for classification and bounding box regression. The 

branch is a fully convolutional network FCN [21] on top of a 

CNN-based feature map. Once these masks are generated, mask 

R-CNN amalgamates them with the classifications and 

bounding boxes that result from faster R-CNN. Overall, it 

generates precise segmentation. 

In the second stage of Faster R-CNN, RoI pool is replaced 

by RoIAlign which helps to preserve spatial information which 

gets misaligned in case of RoI pool. RoIAlign uses binary 

interpolation to create a feature map that is of fixed size. 

The output from RoIAlign layer is then fed into Mask head, 

which consists of two convolution layers. It generates mask for 

each RoI, thus segmenting an image in pixel-to-pixel manner. 

Mask R-CNN architecture is shown in Fig. 4. 

 
Fig. 4 Mask R-CNN Architecture. 



B. Regression/Classification Based Framework 

One-step frameworks based on global 

regression/classification, mapping straightly from image pixels 

to bounding box coordinates and class probabilities, can reduce 

time expense [10]. 

R-CNN object detection systems need to go through two 

stages to detect the objects. YOLO doesn’t need to go through 

these boring processes. It only needs to look once at the image 

to detect all the objects and that is why they chose the name 

(You Only Look Once) and that is actually the reason why 

YOLO is a very fast model. 

1) YOLOv1: YOLO [22] uses an innovative strategy to 

resolving object detection as a regression problem, it detects 

bounding box coordinates and class probabilities directly from 

the image. 

YOLO divides the input image into an S × S grid. If the 

center of an object falls into a grid cell, that grid cell is 

responsible for detecting that object (Each grid cell predicts 

only one object). Each grid cell predicts B bounding boxes and 

confidence scores for those boxes. 

These confidence scores reflect how confident the model 

is that the box contains an object Pr(Object), as well as how 

accurate is the predicted box by evaluating its overlap with the 

ground truth bounding box measured by intersection over 

union IoUpred
truth. 

Each grid cell also predicts C conditional class 

probabilities, Pr(Classi |Object). These probabilities are 

conditioned on the grid cell containing an object. We only 

predict one set of class probabilities per grid cell, regardless of 

the number of boxes B. YOLOv2 architecture is shown in Fig. 

5. 

 
Fig. 5 YOLOv1 Architecture. 

 

Loss function. YOLO uses sum-squared error between the 

predictions and the ground truth to calculate loss. The loss 

function composes of the classification loss, the localization 

loss (errors between the predicted boundary box and the ground 

truth) and the confidence loss (the objectness of the box). 

2) YOLOv2: Since YOLOv1 suffers from localization 

errors and low recall predictions, the YOLOv2 [23] shows a lot 

of improvement to increase the speed vs accuracy trade-off. 

Design improvement in YOLOv2. Batch normalization, 

classifying on high resolution inputs, convolutional with anchor 

boxes, multi-scale training and direct location prediction. 

YOLOv2 architecture is shown in Fig. 6. 

 
Fig. 6 YOLOv2 Architecture. 

 

3) YOLOv3: YOLOv3 [24] is an improved version of 

YOLOv2. First, YOLOv3 can give multi-label classification 

[25] (independent logistic classifiers) to adapt to more complex 

datasets containing many overlapping labels. Second, YOLOv3 

predicts bounding boxes at three different scales by following 

the idea of feature pyramid network for object detection [26].  

The last convolutional layer predicts a 3-d tensor encoding class 

predictions, objectness, and bounding box. Third, YOLOv3 

proposes a deeper and robust feature extractor, called Darknet-

53, inspired by ResNet. YOLOv3 architecture is shown in Fig. 

7. 

Due to the advantages of multi-scale predictions, YOLOv3 

can detect small objects even more but has comparatively worse 

performance on medium and larger sized objects. 

 
Fig. 7 YOLOv3 Architecture. 

 

4) YOLOv3 Tiny: Tiny YOLOv3 is a lightweight target 

detection algorithm applied to embedded platforms based on 

YOLOv3. Therefore, the running speed is significantly 

increased, but detection accuracy is reduced [27], [28], [29], 

[30], [31]. 

Tiny YOLOv3 reduced the YOLOv3 feature detection 

network darknet-53 to a 13 convolution layers and a 6 Max 

Pooling layers, Tiny-yolov3 uses the pooling layer instead of 

YOLOV3’s convolutional layer with a step size of 2 to achieve 

dimensionality reduction. Prediction of bounding boxes occurs 

at two different feature map scales, which are 13×13, and 26×26 

merged with an upsampled 13×13 feature map to predict the 

target. YOLOv3 Tiny architecture is shown in Fig. 8. 



 
Fig. 8 YOLOv3-Tiny Architecture. 

 

The YOLO family is a series of end-to-end DL models 

designed for fast object detection, and it was among the first 

attempts to build a fast real-time object detector. It is one of the 

fastest algorithms out there. Although the accuracy of the 

models is close but not as good as R-CNNs, they are popular 

for object detection because of their detection speed, often 

demonstrated in real-time video or camera feed input. 

III. EXPERIMENTS 

A. Embedded systems 

Since we are dealing with robots that may be small in size, 

then we should search for embedded systems that are compact 

in size, low power consuming and the most important feature is 

to have high computational performance. 

NVidia Jetson devices are embedded AI computing 

platforms that provide high-performance, low-power 

computing support for deep learning and computer vision. 

Together with NVIDIA JetPack™ SDK, these Jetson modules 

open the door to develop and deploy innovative products across 

all industries [32]. 

Jetson is used to deploy a wide range of popular DNN 

models and ML frameworks to the edge with high performance 

inferencing, for tasks like real-time classification and object 

detection, pose estimation, semantic segmentation, and natural 

language processing (NLP). 

Jetson Nano is a small, powerful computer that is able to 

run multiple neural networks in parallel for applications like 

image classification, object detection, segmentation, and 

speech processing. All in an easy-to-use platform that runs in 

as little as 5 watts [33]. 

Jetson TX1 is the world's first supercomputer on a module 

and can provide support for visual computing applications. It is 

built with the NVidia Maxwell™ architecture and 256 CUDA 

cores delivering performance of over one teraflop [34]. 

Jetson TX2 is one of the fastest, most power-efficient 

embedded AI computing devices. This 7.5-watt supercomputer 

on a module brings true AI computing at the edge. An NVidia 

Pascal™ family GPU was used to build it and loaded with 8 GB 

of memory and 59.7 GB/s of memory bandwidth. It included an 

assortment of standard equipment interfaces that make it simple 

to incorporate into a wide scope of hardware [35]. 

Jetson AGX Xavier has exceeded the limit capabilities of 

previous Jetson modules to a great extent. In terms of 

performance and efficiency in deep learning and computer 

vision, it has surpassed the world’s most autonomous machines 

and advanced robot [36]. This powerful AI computing GPU 

workstation works under 30 W. It was built around a NVidia 

Volta™ GPU with Tensor Cores, two NVDLA engines, and an 

eight-core 64-bit ARM CPU. NVidia Jetson AGX Xavier is the 

most recent expansion to the Jetson stage [37]. This AI GPU 

computer can provide unparalleled 32 TeraOPS (TOPS) of the 

peak computation in a compact 100-mm × 87-mm module 

form-factor [38]. Xavier’s energy efficient module can be 

deployed in next-level intelligent machines for end-to-end 

autonomous capabilities. Basic comparison between Jetson 

modules shows comparison between Jetson modules 

TABLE I.  BASIC COMPARISON BETWEEN JETSON MODULES 

 GPU CPU Memory 

AI 

Perfo

rman

ce 

Power 

Jetson 

Nano 
128-core 

Maxwell 

Quad-core 

ARM A57 @ 
1.43 GHz 

4 GB 64-bit 

LPDDR4 
25.6 GB/s 

472 

GFL
OPs 

5W / 

10W 

Jetson 

TX1 

256-core 

NVIDIA 

Maxwell™ 

GPU 

Quad-Core 

ARM® 

Cortex®-A57 

MPCore 

4GB 64-bit 
LPDDR4 

Memory 

1 
TFL

OPs 

Under 

10W 

Jetson 

TX2 

256-core 

NVIDIA 

Pascal™ 

GPU 

architecture 
with 256 

NVIDIA 

CUDA cores 

Dual-Core 

NVIDIA 

Denver 2 64-

Bit CPU 

Quad-Core 
ARM® 

Cortex®-A57 

MPCore 

8GB 128-

bit 

LPDDR4 

Memory 
1866 MHx - 

59.7 GB/s 

1.33 

TFL

OPs 
 

7.5W 

/ 15W 

Jetson 

Xavier 

512-core 

Volta GPU 
with Tensor 

Cores 

8-core ARM 

v8.2 64-bit 
CPU, 8MB L2 

+ 4MB L3 

32GB 256-

Bit 
LPDDR4x | 

137GB/s 

16 

TFL

OPs 

10W / 

15W / 

30W 

 

Since Jetson Xavier embedded system is the most powerful 

among all other candidates, we will use it to benchmark 

different object detection algorithms to choose the most suitable 

for our task. 

B. Datasets 

We compare various object detection methods on two 

benchmark datasets, including PASCAL VOC 2007 [39] and 

Microsoft COCO [40]. 

The evaluated approaches include R-CNN [11], Fast R-

CNN [17], Faster R-CNN [19], Mask R-CNN [20], YOLO [22], 

YOLOv2 [23], YOLOv3 [24] and YOLOv3 tiny [27], [28], 

[29], [30], [31]. 

PASCAL VOC 2007 dataset consists of 20 categories. 

Microsoft COCO, on the other hand, is composed of more than 

300,000 fully segmented images, in which each image has an 

average of 7 object instances from a total of 80 categories. As 

there are a lot of less iconic objects with a broad range of scales 

and a stricter requirement on object localization, this dataset is 

more challenging than PASCAL 2007. 



Dataset statistics shows some comparison of the 

differences between the PASCAL VOC 2007 and Microsoft 

COCO. 

TABLE II.  DATASET STATISTICS 

Dataset Microsoft COCO 
PASCAL VOC 

2007 

Number of categories 80 20 

Number of train-val images 246690 5011 

Number of test images 81,434 4952 

Number of annotated objects 2500000 24640 

Total objects/total number of 
images 

7.6 2.4 

 

Object detection performance is evaluated by average 

precision AP. For PASCAL VOC 2007, the evaluation terms 

are Average Precision (AP) in each single category and mean 

Average Precision (mAP) across all the 20 categories. In COCO 

dataset AP metric is used for evaluation which is an averaged 

over multiple Intersection over Union (IoU) values, specifically 

10 IoU thresholds of [.50:.05:.95] are used. 

AP is also averaged over all categories. Traditionally, this 

is called "mean average precision" (mAP), but we will denote 

to it as AP to distinct between COCO and VOC 07 evaluation 

metrics. So, for COCO we will use AP (averaged across all 10 

IoU thresholds and all 80 categories). Averaging over IoUs 

rewards detectors with better localization. 

IV. RESULTS 

A. Accuracy comparison 

It is important to note that technology is constantly 

evolving, any comparison can become obsolete quickly. 

These experiments are performed in different 

environments [10], [11], [17], [19], [20], [22], [23], [24], [29], 

[41], [42], so maybe the results will change a little bit if it is 

tried to reproduce them. But the purpose of this article is to have 

a general notion about these methods. 

Tables Comparative results on MICROSOFT COCO 

TEST DEV SET (%), Comparative results on VOC 2007 TEST 

SET (%), Accuracy of different object detection algorithms on 

Microsoft COCO and PASCAL VOC 2007 datasets show 

results of the proposed algorithms on different datasets. 

Overall, region proposal-based methods, such as Faster R-

CNN and Mask R-CNN, perform better than 

regression/classfication based approaches like YOLO, due to 

the fact that quite a lot of localization errors are produced by 

regression/classification-based approaches. 

TABLE III.  COMPARATIVE RESULTS ON MICROSOFT COCO TEST 

DEV SET (%) 

Algorithm backbone Trained on AP (%) 

R-CNN — — — 

Fast R-CNN Vgg16 COCO train 19.7 

Faster R-CNN Vgg16 COCO trainval 21.7 

Mask R-CNN ResNet-101- 
FPN 

COCO 
trainval35 

39.8 

YOLO — — — 

YOLOv2 
Darknet-19 

COCO 

trainval35 

21.6 

YOLOv3 
Darknet-53 

COCO 

trainval35 

33.0 

YOLOv3 tiny Reduced 

Darknet-53 

COCO 

trainval35 

15.3 

TABLE IV.  COMPARATIVE RESULTS ON VOC 2007 TEST SET (%) 

Algorithm backbone Trained mAP (%) 

R-CNN Vgg16 07 66.0 

Fast R-CNN Vgg16 07+12 70.0 

Faster R-CNN Vgg16 07+12 76.4 

Mask R-CNN — — — 

YOLO Googlenet 07+12 63.4 

YOLOv2 Darknet-19 07+12 78.6 

YOLOv3 Darknet-53 07+12 87.4 

YOLOv3 tiny 
Reduced 

Darknet-53 
07+12 61.3 

TABLE V.  ACCURACY OF DIFFERENT OBJECT DETECTION ALGORITHMS 

ON MICROSOFT COCO AND PASCAL VOC 2007 DATASETS 

Algorithm Microsoft COCO 

AP (%) 

PASCAL VOC 2007 

mAP (%) 

R-CNN — 66.0 

Fast R-CNN 19.7 70.0 

Faster R-CNN 21.7 76.4 

Mask R-CNN 39.8 — 

YOLO — 63.4 

YOLOv2 21.6 78.6 

YOLOv3 33.0 87.4 

YOLOv3 tiny 15.3 61.3 
 

As YOLOv1 is not skilled in producing object localizations 

of high IoU, it obtains a very poor result on VOC 2007. 

However, with the aid of other strategies, such as anchor boxes, 

BN and fine-grained features, the localization errors are 

corrected (YOLOv2). 

Fig. 9, 10 show algorithms performance on PASCAL VOC 

2007 and Microsoft COCO dataset respectively. 

 
Fig. 9 Accuracy performance of different object detection algorithms on 

PASCAL VOC 2007 dataset. 

 
Fig. 10 Accuracy performance of different object detection algorithms on 

Microsoft COCO dataset. 
 



We can notice that the results on COCO dataset are much 

worse than those of VOC 2007, and this is due to the existence 

of a large number of nonstandard small objects. 

B. Speed comparison 

The processing speed variation experiment was performed 

for each of the models on three devices. First, the experiments 

were performed on Jetson TX1 [34], Jetson TX2 [35], and 

Jetson Xavier that was released for edge-computing [37]. 

The performance results in the form of frame per seconds 

FPS are shown in below [43], [44]. This table provides a 

quantitative comparison between different type of on-board 

embedded GPU system. However, using this table, one can 

choose the best algorithm and system for a specific operation. 

TABLE VI.  PERFORMANCE COMPARISON BETWEEN JETSON MODULES 

USED FOR TARGET DETECTION 

algorithm TX1 (FPS) TX2 (FPS) Xavier (FPS) 

Fast R-CNN — — — 

Faster R-CNN — 1 1.3 
Mask R-CNN — — — 

YOLO    

YOLOv2 3 10 28 

YOLOv3 — 4 17 

YOLOv3 tiny 9 11 31 
 

Regression based models can usually be processed in real- 

time at the cost of a drop in accuracy compared with region 

proposal-based models. 

The higher resolution images for the same model have 

better Map but are slower to process. 

The performance and efficiency of Jetson AGX Xavier 

makes it possible to process all of the components needed for 

robots to function safely with full autonomy in real-time, 

including high-performance vision algorithms for real-time 

perception, navigation, and manipulation. 

Fig. 11, 12 show the performance in terms of speed and 

accuracy for some object detection algorithms that are 

applicable on NVIDIA Jetson Xavier. 

 
Fig. 11 Object detection algorithms Speed vs accuracy trade-off. 

 
Fig. 12 Performance of different object detection algorithms in terms of speed 

and accuracy. 

V. CONCLUSION 

It is difficult to define a fair feature of different object 

detectors, each case of real life can have different solutions to 

reach a decision concerning the accuracy and speed. It is 

necessary to know other factors that affect performance: the 

type of feature extractor, steps out of the extractor, income 

resolutions images, strategy coincidence and threshold (as 

predictions are excluded when calculating the loss), Threshold 

IoU no maximum suppression ratio of positive anchor and 

negative, number of proposals, increased data set of training 

data, using multi-scale images training or testing. 

Since the main focus of this paper was on object detection 

for a robot navigation, we first needed to figure out which 

algorithm provides faster and more accurate results. 

Even though that YOLOv3 tiny is the only algorithm that 

can be implemented on Jetson Xavier in real-time (more than 

30 FPS) but our choice to use YOLOv2 on robot application 

that demands real-time processing. 

The YOLOv2 selection was based on its speed 

performance that is very close to real-time and its accuracy 

(21.6% COCO AP) which is 40% better than YOLOv3 tiny 

(15.3% COCO AP). 

In this paper, we have reviewed some object detection 

algorithms including region proposal approaches like R-CNN 

family and regression/classification approaches like YOLO 

versions. 

We have also discussed the properties of some on-board 

embedded GPU system that can be used to perform deep 

learning processing and the difference between them. 

In addition, we performed an experimental comparison on 

the performance of each algorithm in terms of accuracy based 

on two datasets Microsoft COCO and PASCAL VOC 2007 and 

in terms of processing speed by on-board embedded GPU 

systems. 

This paper can be used to determine the appropriate object 

detection algorithm for a specific task relying on 

speed/accuracy trade-off. 
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