
Object detection approaches to be used in embedded

system for robots navigation

Ahmad Ali Deeb Farah Shahhoud

Department of Computer Science, Artificial Intelligence, and

Control Systems

Department of computer science, artificial intelligence, and

control systems

Bauman Moscow State Technical University Bauman Moscow State Technical University

Moscow, Russia Moscow, Russia

ahmadalideeb3@gmail.com faro7.sh@gmail.com

Abstract - This paper investigates the problem of object detection

for real-time agents’ navigation using embedded systems. In real-

world problems, a compromise between accuracy and speed must be

found. In this paper, we consider a description of the architecture of

different object detection algorithms, such as R-CNN and YOLO, to

compare them on different variants of embedded systems using

different datasets. As a result, we provide a trade-off study based on

accuracy and speed for different object detection algorithms to

choose the appropriate one depending on the specific application

task.

Index Terms – Robot navigation, object detection, embedded

systems, YOLO algorithms, R-CNN algorithms, object semantics.

I. INTRODUCTION

Target detection has attracted significant attention for

autonomous robots due to its notable benefits and recent

progress [1]. Target tracking can be used in autonomous

vehicles for the development of guidance systems [2].

Pedestrian detection [3], dynamic vehicle detection, and

obstacle detection [4] can improve the features of the guiding

assistance system. Object recognition technologies for self-

driving vehicles have strict requirements in terms of accuracy,

unambiguousness, robustness, space demand, and costs [5].

Similarly, object recognition and tracking features in robots can

assist in wheeled robots navigation and obstacle avoidance.

Visual navigation systems in service robots can be used in

many applications, they are typically deployed in retail,

healthcare, warehouse. Others are deployed in more rugged

settings, such as in space, defense, agricultural applications,

demolition, and for automating dangerous or laborious tasks.

Previously, target detection in robot systems mostly used

vision-based target finding algorithms. For example, Raspberry

Pi and OpenCV were used to find a target [6]. However,

computer vision techniques might provide less accurate results

and have issues in predicting unknown future data. On the other

hand, machine learning target-detection algorithms can provide

a very accurate result, and the model can make predictions from

unknown future data. Visual recognition systems involving

image classification, localization, and segmentation have

accomplished extraordinary research contributions [7].

Moreover, deep learning has made great progress in solving

issues in the fields of computer vision, image and video

processing, and multimedia [8]. Because of the critical

advancements in neural networks, particularly deep learning

[9], these visual recognition systems have shown great potential

in target tracking.

On-board and off-board ground-based systems are

promising platforms in this context. Most of the time, the robot

system cannot be equipped with heavy devices due to weight

and power consumption. Therefore, off-board ground systems

play a vital role. In some cases, communication with the ground

station could be impossible due to distance or coverage. An on-

board system that can support both weight and power

consumption would be a perfect framework for such a situation

and environment.

In the present study, we compared various object detection

algorithms and different embedded systems to execute those

algorithms, based on the comparison we will choose the best

algorithm with the best embedded system for object detection

in a robot system in real time.

II. IMPLEMENTED OBJECT DETECTION ALGORITHM IN

ROBOT SYSTEM

A. Region Proposal Based Framework

The region proposal-based framework, is a two-step

process, matches the attentional mechanism of human brain to

some extent, which gives a coarse scan of the whole scenario

firstly and then focuses on regions of interest [10].

1) Region with CNN (R-CNN): The original paper “Rich

feature hierarchies for accurate object detection and semantic

segmentation” [11] elaborates one of the first breakthroughs of

the use of CNNs in an object detection system called the ‘R-

CNN’ or ‘Regions with CNN’ that had a much higher object

detection performance than other popular methods at the time.

R-CNN generates features in a region using CNN. The

algorithm proposed in [11] employed selective search [12] to

extract just 2000 regions from the entire input image. These

regions are referred to as region proposals RoI and they have a

high probability of containing an object. Therefore, instead of

classifying big number of regions, just 2000 regions can be

worked with as in Fig.1.

Due to the requirement of CNNs to have a fixed input

image size, the proposed RoIs are then warped to have a fixed

size, then they are fed to a convolution neural network that will

extract features from each candidate region.

A classifier like a support vector machine (SVM) [13], [14] will

classify the presence of the object within that candidate region

proposal based on the extracted features from the previous step.

In addition to predicting the presence of an object within

the region proposals, the algorithm also has a bounding-box

regressor that predicts four values which are the location and

size of the bounding box that surrounds the object, then filtering

with a greedy non-maximum suppression (NMS) [15], [16] to

produce final bounding boxes. R-CNN architecture is shown in

Fig. 1.

Fig. 1 R-CNN Architecture.

Limitations of R-CNN. It still takes a huge amount of time

to train the network as it would have to classify 2000 region

proposals per image, it cannot be implemented real time as it

takes around 47 seconds for each test image and the selective

search algorithm is a fixed algorithm. Therefore, no learning is

happening at that stage. This could lead to the generation of bad

candidate region proposals.

2) Fast R-CNN: R-CNN model took a huge amount of time

to train the network. Girshick et al. [17] built another faster

object detection algorithm known as Fast R-CNN to circumvent

this problem. Instead of starting with the regions proposal

module and then using the feature extraction module, like R-

CNN, Fast-RCNN proposes that we apply the CNN feature

extractor first to the entire input image and then propose

regions. This way, we run only one ConvNet over the entire

image instead of 2,000 ConvNets over 2,000 overlapping

regions. And the region proposals are generated using other

algorithms algorithm such as Edge Boxes [18].

The ConvNet has an extended job to do the classification

part as well, this has done by replacing the traditional SVM

machine learning algorithm [13], [14] with a softmax layer.

This way, single model will perform both tasks: feature

extraction and object classification. Fast R-CNN architecture is

shown in Fig. 2.

Limitations of Fast R-CNN. Still requires candidate

regions as input and the running time of Fast R-CNN is reduced,

exposing region proposal computation as a bottleneck.

3) Faster R-CNN: Faster R-CNN is the third iteration of the

R-CNN family, developed in 2016 by Shaoqing Ren et al [19].

Similar to Fast R-CNN, the image is provided as an input to a

convolutional network that provides a convolutional feature

map. Instead of using a selective search algorithm on the feature

map to identify the region proposals, a region proposal network

(RPN) is used to predict the region proposals as part of the

training process.

The architecture of Faster R-CNN can be described using

two main networks, first network is region proposal network

(RPN)—Selective search is replaced by a ConvNet that

proposes RoIs from the last feature maps of the feature extractor

to be considered for investigation where the RPN has two

outputs, the objectness score (object or no object) and the box

location. Second network consists of the typical components of

Fast R-CNN. Faster R-CNN architecture is shown in Fig. 3.

Fig. 2 Fast R-CNN Architecture.

Fig. 3 Faster R-CNN Architecture.

4) Mask R-CNN: Mask R-CNN is an extended version of

faster R-CNN for pixel level segmentation. Mask R-CNN [20]

works by adding a branch for predicting segmentation masks

on each Region of Interest (RoI), in parallel with the existing

branch for classification and bounding box regression. The

branch is a fully convolutional network FCN [21] on top of a

CNN-based feature map. Once these masks are generated, mask

R-CNN amalgamates them with the classifications and

bounding boxes that result from faster R-CNN. Overall, it

generates precise segmentation.

In the second stage of Faster R-CNN, RoI pool is replaced

by RoIAlign which helps to preserve spatial information which

gets misaligned in case of RoI pool. RoIAlign uses binary

interpolation to create a feature map that is of fixed size.

The output from RoIAlign layer is then fed into Mask head,

which consists of two convolution layers. It generates mask for

each RoI, thus segmenting an image in pixel-to-pixel manner.

Mask R-CNN architecture is shown in Fig. 4.

Fig. 4 Mask R-CNN Architecture.

B. Regression/Classification Based Framework

One-step frameworks based on global

regression/classification, mapping straightly from image pixels

to bounding box coordinates and class probabilities, can reduce

time expense [10].

R-CNN object detection systems need to go through two

stages to detect the objects. YOLO doesn’t need to go through

these boring processes. It only needs to look once at the image

to detect all the objects and that is why they chose the name

(You Only Look Once) and that is actually the reason why

YOLO is a very fast model.

1) YOLOv1: YOLO [22] uses an innovative strategy to

resolving object detection as a regression problem, it detects

bounding box coordinates and class probabilities directly from

the image.

YOLO divides the input image into an S × S grid. If the

center of an object falls into a grid cell, that grid cell is

responsible for detecting that object (Each grid cell predicts

only one object). Each grid cell predicts B bounding boxes and

confidence scores for those boxes.

These confidence scores reflect how confident the model

is that the box contains an object Pr(Object), as well as how

accurate is the predicted box by evaluating its overlap with the

ground truth bounding box measured by intersection over

union IoUpred
truth.

Each grid cell also predicts C conditional class

probabilities, Pr(Classi |Object). These probabilities are

conditioned on the grid cell containing an object. We only

predict one set of class probabilities per grid cell, regardless of

the number of boxes B. YOLOv2 architecture is shown in Fig.

5.

Fig. 5 YOLOv1 Architecture.

Loss function. YOLO uses sum-squared error between the

predictions and the ground truth to calculate loss. The loss

function composes of the classification loss, the localization

loss (errors between the predicted boundary box and the ground

truth) and the confidence loss (the objectness of the box).

2) YOLOv2: Since YOLOv1 suffers from localization

errors and low recall predictions, the YOLOv2 [23] shows a lot

of improvement to increase the speed vs accuracy trade-off.

Design improvement in YOLOv2. Batch normalization,

classifying on high resolution inputs, convolutional with anchor

boxes, multi-scale training and direct location prediction.

YOLOv2 architecture is shown in Fig. 6.

Fig. 6 YOLOv2 Architecture.

3) YOLOv3: YOLOv3 [24] is an improved version of

YOLOv2. First, YOLOv3 can give multi-label classification

[25] (independent logistic classifiers) to adapt to more complex

datasets containing many overlapping labels. Second, YOLOv3

predicts bounding boxes at three different scales by following

the idea of feature pyramid network for object detection [26].

The last convolutional layer predicts a 3-d tensor encoding class

predictions, objectness, and bounding box. Third, YOLOv3

proposes a deeper and robust feature extractor, called Darknet-

53, inspired by ResNet. YOLOv3 architecture is shown in Fig.

7.

Due to the advantages of multi-scale predictions, YOLOv3

can detect small objects even more but has comparatively worse

performance on medium and larger sized objects.

Fig. 7 YOLOv3 Architecture.

4) YOLOv3 Tiny: Tiny YOLOv3 is a lightweight target

detection algorithm applied to embedded platforms based on

YOLOv3. Therefore, the running speed is significantly

increased, but detection accuracy is reduced [27], [28], [29],

[30], [31].

Tiny YOLOv3 reduced the YOLOv3 feature detection

network darknet-53 to a 13 convolution layers and a 6 Max

Pooling layers, Tiny-yolov3 uses the pooling layer instead of

YOLOV3’s convolutional layer with a step size of 2 to achieve

dimensionality reduction. Prediction of bounding boxes occurs

at two different feature map scales, which are 13×13, and 26×26

merged with an upsampled 13×13 feature map to predict the

target. YOLOv3 Tiny architecture is shown in Fig. 8.

Fig. 8 YOLOv3-Tiny Architecture.

The YOLO family is a series of end-to-end DL models

designed for fast object detection, and it was among the first

attempts to build a fast real-time object detector. It is one of the

fastest algorithms out there. Although the accuracy of the

models is close but not as good as R-CNNs, they are popular

for object detection because of their detection speed, often

demonstrated in real-time video or camera feed input.

III. EXPERIMENTS

A. Embedded systems

Since we are dealing with robots that may be small in size,

then we should search for embedded systems that are compact

in size, low power consuming and the most important feature is

to have high computational performance.

NVidia Jetson devices are embedded AI computing

platforms that provide high-performance, low-power

computing support for deep learning and computer vision.

Together with NVIDIA JetPack™ SDK, these Jetson modules

open the door to develop and deploy innovative products across

all industries [32].

Jetson is used to deploy a wide range of popular DNN

models and ML frameworks to the edge with high performance

inferencing, for tasks like real-time classification and object

detection, pose estimation, semantic segmentation, and natural

language processing (NLP).

Jetson Nano is a small, powerful computer that is able to

run multiple neural networks in parallel for applications like

image classification, object detection, segmentation, and

speech processing. All in an easy-to-use platform that runs in

as little as 5 watts [33].

Jetson TX1 is the world's first supercomputer on a module

and can provide support for visual computing applications. It is

built with the NVidia Maxwell™ architecture and 256 CUDA

cores delivering performance of over one teraflop [34].

Jetson TX2 is one of the fastest, most power-efficient

embedded AI computing devices. This 7.5-watt supercomputer

on a module brings true AI computing at the edge. An NVidia

Pascal™ family GPU was used to build it and loaded with 8 GB

of memory and 59.7 GB/s of memory bandwidth. It included an

assortment of standard equipment interfaces that make it simple

to incorporate into a wide scope of hardware [35].

Jetson AGX Xavier has exceeded the limit capabilities of

previous Jetson modules to a great extent. In terms of

performance and efficiency in deep learning and computer

vision, it has surpassed the world’s most autonomous machines

and advanced robot [36]. This powerful AI computing GPU

workstation works under 30 W. It was built around a NVidia

Volta™ GPU with Tensor Cores, two NVDLA engines, and an

eight-core 64-bit ARM CPU. NVidia Jetson AGX Xavier is the

most recent expansion to the Jetson stage [37]. This AI GPU

computer can provide unparalleled 32 TeraOPS (TOPS) of the

peak computation in a compact 100-mm × 87-mm module

form-factor [38]. Xavier’s energy efficient module can be

deployed in next-level intelligent machines for end-to-end

autonomous capabilities. Basic comparison between Jetson

modules shows comparison between Jetson modules

TABLE I. BASIC COMPARISON BETWEEN JETSON MODULES

 GPU CPU Memory

AI

Perfo

rman

ce

Power

Jetson

Nano
128-core

Maxwell

Quad-core

ARM A57 @
1.43 GHz

4 GB 64-bit

LPDDR4
25.6 GB/s

472

GFL
OPs

5W /

10W

Jetson

TX1

256-core

NVIDIA

Maxwell™

GPU

Quad-Core

ARM®

Cortex®-A57

MPCore

4GB 64-bit
LPDDR4

Memory

1
TFL

OPs

Under

10W

Jetson

TX2

256-core

NVIDIA

Pascal™

GPU

architecture
with 256

NVIDIA

CUDA cores

Dual-Core

NVIDIA

Denver 2 64-

Bit CPU

Quad-Core
ARM®

Cortex®-A57

MPCore

8GB 128-

bit

LPDDR4

Memory
1866 MHx -

59.7 GB/s

1.33

TFL

OPs

7.5W

/ 15W

Jetson

Xavier

512-core

Volta GPU
with Tensor

Cores

8-core ARM

v8.2 64-bit
CPU, 8MB L2

+ 4MB L3

32GB 256-

Bit
LPDDR4x |

137GB/s

16

TFL

OPs

10W /

15W /

30W

Since Jetson Xavier embedded system is the most powerful

among all other candidates, we will use it to benchmark

different object detection algorithms to choose the most suitable

for our task.

B. Datasets

We compare various object detection methods on two

benchmark datasets, including PASCAL VOC 2007 [39] and

Microsoft COCO [40].

The evaluated approaches include R-CNN [11], Fast R-

CNN [17], Faster R-CNN [19], Mask R-CNN [20], YOLO [22],

YOLOv2 [23], YOLOv3 [24] and YOLOv3 tiny [27], [28],

[29], [30], [31].

PASCAL VOC 2007 dataset consists of 20 categories.

Microsoft COCO, on the other hand, is composed of more than

300,000 fully segmented images, in which each image has an

average of 7 object instances from a total of 80 categories. As

there are a lot of less iconic objects with a broad range of scales

and a stricter requirement on object localization, this dataset is

more challenging than PASCAL 2007.

Dataset statistics shows some comparison of the

differences between the PASCAL VOC 2007 and Microsoft

COCO.

TABLE II. DATASET STATISTICS

Dataset Microsoft COCO
PASCAL VOC

2007

Number of categories 80 20

Number of train-val images 246690 5011

Number of test images 81,434 4952

Number of annotated objects 2500000 24640

Total objects/total number of
images

7.6 2.4

Object detection performance is evaluated by average

precision AP. For PASCAL VOC 2007, the evaluation terms

are Average Precision (AP) in each single category and mean

Average Precision (mAP) across all the 20 categories. In COCO

dataset AP metric is used for evaluation which is an averaged

over multiple Intersection over Union (IoU) values, specifically

10 IoU thresholds of [.50:.05:.95] are used.

AP is also averaged over all categories. Traditionally, this

is called "mean average precision" (mAP), but we will denote

to it as AP to distinct between COCO and VOC 07 evaluation

metrics. So, for COCO we will use AP (averaged across all 10

IoU thresholds and all 80 categories). Averaging over IoUs

rewards detectors with better localization.

IV. RESULTS

A. Accuracy comparison

It is important to note that technology is constantly

evolving, any comparison can become obsolete quickly.

These experiments are performed in different

environments [10], [11], [17], [19], [20], [22], [23], [24], [29],

[41], [42], so maybe the results will change a little bit if it is

tried to reproduce them. But the purpose of this article is to have

a general notion about these methods.

Tables Comparative results on MICROSOFT COCO

TEST DEV SET (%), Comparative results on VOC 2007 TEST

SET (%), Accuracy of different object detection algorithms on

Microsoft COCO and PASCAL VOC 2007 datasets show

results of the proposed algorithms on different datasets.

Overall, region proposal-based methods, such as Faster R-

CNN and Mask R-CNN, perform better than

regression/classfication based approaches like YOLO, due to

the fact that quite a lot of localization errors are produced by

regression/classification-based approaches.

TABLE III. COMPARATIVE RESULTS ON MICROSOFT COCO TEST

DEV SET (%)

Algorithm backbone Trained on AP (%)

R-CNN — — —

Fast R-CNN Vgg16 COCO train 19.7

Faster R-CNN Vgg16 COCO trainval 21.7

Mask R-CNN ResNet-101-
FPN

COCO
trainval35

39.8

YOLO — — —

YOLOv2
Darknet-19

COCO

trainval35

21.6

YOLOv3
Darknet-53

COCO

trainval35

33.0

YOLOv3 tiny Reduced

Darknet-53

COCO

trainval35

15.3

TABLE IV. COMPARATIVE RESULTS ON VOC 2007 TEST SET (%)

Algorithm backbone Trained mAP (%)

R-CNN Vgg16 07 66.0

Fast R-CNN Vgg16 07+12 70.0

Faster R-CNN Vgg16 07+12 76.4

Mask R-CNN — — —

YOLO Googlenet 07+12 63.4

YOLOv2 Darknet-19 07+12 78.6

YOLOv3 Darknet-53 07+12 87.4

YOLOv3 tiny
Reduced

Darknet-53
07+12 61.3

TABLE V. ACCURACY OF DIFFERENT OBJECT DETECTION ALGORITHMS

ON MICROSOFT COCO AND PASCAL VOC 2007 DATASETS

Algorithm Microsoft COCO

AP (%)

PASCAL VOC 2007

mAP (%)

R-CNN — 66.0

Fast R-CNN 19.7 70.0

Faster R-CNN 21.7 76.4

Mask R-CNN 39.8 —

YOLO — 63.4

YOLOv2 21.6 78.6

YOLOv3 33.0 87.4

YOLOv3 tiny 15.3 61.3

As YOLOv1 is not skilled in producing object localizations

of high IoU, it obtains a very poor result on VOC 2007.

However, with the aid of other strategies, such as anchor boxes,

BN and fine-grained features, the localization errors are

corrected (YOLOv2).

Fig. 9, 10 show algorithms performance on PASCAL VOC

2007 and Microsoft COCO dataset respectively.

Fig. 9 Accuracy performance of different object detection algorithms on

PASCAL VOC 2007 dataset.

Fig. 10 Accuracy performance of different object detection algorithms on

Microsoft COCO dataset.

We can notice that the results on COCO dataset are much

worse than those of VOC 2007, and this is due to the existence

of a large number of nonstandard small objects.

B. Speed comparison

The processing speed variation experiment was performed

for each of the models on three devices. First, the experiments

were performed on Jetson TX1 [34], Jetson TX2 [35], and

Jetson Xavier that was released for edge-computing [37].

The performance results in the form of frame per seconds

FPS are shown in below [43], [44]. This table provides a

quantitative comparison between different type of on-board

embedded GPU system. However, using this table, one can

choose the best algorithm and system for a specific operation.

TABLE VI. PERFORMANCE COMPARISON BETWEEN JETSON MODULES

USED FOR TARGET DETECTION

algorithm TX1 (FPS) TX2 (FPS) Xavier (FPS)

Fast R-CNN — — —

Faster R-CNN — 1 1.3
Mask R-CNN — — —

YOLO

YOLOv2 3 10 28

YOLOv3 — 4 17

YOLOv3 tiny 9 11 31

Regression based models can usually be processed in real-

time at the cost of a drop in accuracy compared with region

proposal-based models.

The higher resolution images for the same model have

better Map but are slower to process.

The performance and efficiency of Jetson AGX Xavier

makes it possible to process all of the components needed for

robots to function safely with full autonomy in real-time,

including high-performance vision algorithms for real-time

perception, navigation, and manipulation.

Fig. 11, 12 show the performance in terms of speed and

accuracy for some object detection algorithms that are

applicable on NVIDIA Jetson Xavier.

Fig. 11 Object detection algorithms Speed vs accuracy trade-off.

Fig. 12 Performance of different object detection algorithms in terms of speed

and accuracy.

V. CONCLUSION

It is difficult to define a fair feature of different object

detectors, each case of real life can have different solutions to

reach a decision concerning the accuracy and speed. It is

necessary to know other factors that affect performance: the

type of feature extractor, steps out of the extractor, income

resolutions images, strategy coincidence and threshold (as

predictions are excluded when calculating the loss), Threshold

IoU no maximum suppression ratio of positive anchor and

negative, number of proposals, increased data set of training

data, using multi-scale images training or testing.

Since the main focus of this paper was on object detection

for a robot navigation, we first needed to figure out which

algorithm provides faster and more accurate results.

Even though that YOLOv3 tiny is the only algorithm that

can be implemented on Jetson Xavier in real-time (more than

30 FPS) but our choice to use YOLOv2 on robot application

that demands real-time processing.

The YOLOv2 selection was based on its speed

performance that is very close to real-time and its accuracy

(21.6% COCO AP) which is 40% better than YOLOv3 tiny

(15.3% COCO AP).

In this paper, we have reviewed some object detection

algorithms including region proposal approaches like R-CNN

family and regression/classification approaches like YOLO

versions.

We have also discussed the properties of some on-board

embedded GPU system that can be used to perform deep

learning processing and the difference between them.

In addition, we performed an experimental comparison on

the performance of each algorithm in terms of accuracy based

on two datasets Microsoft COCO and PASCAL VOC 2007 and

in terms of processing speed by on-board embedded GPU

systems.

This paper can be used to determine the appropriate object

detection algorithm for a specific task relying on

speed/accuracy trade-off.

REFERENCES

[1] Yoon, Y., Gruber, S., Krakow, L., & Pack, D. (2009). Autonomous target
detection and localization using cooperative unmanned aerial vehicles. In
M. J. Hirsch, C. W. Commander, P. M. Pardalos, & R. Murphey
(Eds.), Optimization and Cooperative Control Strategies (Vol. 381, pp.
195–205). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-
540-88063-9_12.

[2] Gietelink, O., Ploeg, J., De Schutter, B., & Verhaegen, M. (2006).
Development of advanced driver assistance systems with vehicle
hardware-in-the-loop simulations. Vehicle System Dynamics, 44(7), 569–
590. https://doi.org/10.1080/00423110600563338.

[3] Gerónimo, D., López, A. M., Sappa, A. D., & Graf, T. (2010). Survey of
pedestrian detection for advanced driver assistance systems. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 32(7), 1239–
1258. https://doi.org/10.1109/TPAMI.2009.122.

[4] Ferguson, D., Darms, M., Urmson, C., & Kolski, S., (2008). Detection,
prediction, and avoidance of dynamic obstacles in urban environments.
IEEE Intelligent Vehicles Symposium, pp. 1149-1154, doi:
10.1109/IVS.2008.4621214.

[5] Hirz, M., & Walzel, B. (2018). Sensor and object recognition technologies
for self-driving cars. Computer-Aided Design and Applications, 15(4),
501–508. https://doi.org/10.1080/16864360.2017.1419638.

[6] Ajmal Hinas, Jonathan Roberts, & Felipe Gonzalez. (2017a). Vision-
based target finding and inspection of a ground target using a multirotor
uav system. Sensors, 17(12), 2929. https://doi.org/10.3390/s17122929.

[7] Pathak, A. R., Pandey, M., & Rautaray, S. (2018). Application of deep
learning for object detection. Procedia Computer Science, 132, 1706–
1717. https://doi.org/10.1016/j.procs.2018.05.144.

[8] Tijtgat, N., Van Ranst, W., Volckaert, B., Goedeme, T., & De Turck, F.
(2017). Embedded real-time object detection for a uav warning
system. 2017 IEEE International Conference on Computer Vision
Workshops (ICCVW), 2110–2118.
https://doi.org/10.1109/ICCVW.2017.247.

[9] Han, S., Shen, W., & Liu, Z. (2016). Deep Drone : Object Detection and
Tracking for Smart Drones on Embedded System.

[10] Zhao, Z.-Q., Zheng, P., Xu, S., & Wu, X. (2019). Object detection with
deep learning: A review. ArXiv:1807.05511 [Cs].
http://arxiv.org/abs/1807.05511

[11] Girshick, R., Donahue, J., Darrell, T., & Malik, J. (2014). Rich feature
hierarchies for accurate object detection and semantic
segmentation. ArXiv:1311.2524 [Cs]. http://arxiv.org/abs/1311.2524.

[12] Uijlings, J. R. R., van de Sande, K. E. A., Gevers, T., & Smeulders, A. W.
M. (2013). Selective search for object recognition. International Journal
of Computer Vision, 104(2), 154–171. https://doi.org/10.1007/s11263-
013-0620-5.

[13] Drucker, H., Burges, C. JC., Kaufman, L., Smola, A. J., & Vapnik, V.
(1997). Support vector regression machines. In Advances in neural
information processing systems. 155–161.

[14] Hearst, M. A., Dumais, S. T., Osuna, E., Platt, J., & Scholkopf, B. (1998).
Support vector machines. IEEE Intelligent Systems and Their
Applications, 13(4), 18–28. https://doi.org/10.1109/5254.708428.

[15] Neubeck, A. & Van Gool, L. (2006). Efficient Non-Maximum
Suppression. 18th International Conference on Pattern Recognition
(ICPR'06), pp. 850-855, doi: 10.1109/ICPR.2006.479.

[16] Hosang, J., Benenson, R., & Schiele, B. (2017). Learning non-maximum
suppression. ArXiv:1705.02950 [Cs]. http://arxiv.org/abs/1705.02950.

[17] Girshick, R. (2015). Fast r-cnn. ArXiv:1504.08083 [Cs].
http://arxiv.org/abs/1504.08083

[18] Zitnick, C. L., & Dollár, P. (2014). Edge boxes: Locating object proposals
from edges. In D. Fleet, T. Pajdla, B. Schiele, & T. Tuytelaars
(Eds.), Computer Vision – ECCV 2014 (Vol. 8693, pp. 391–405).
Springer International Publishing. https://doi.org/10.1007/978-3-319-
10602-1_26

[19] Ren, S., He, K., Girshick, R., & Sun, J. (2016). Faster r-cnn: Towards
real-time object detection with region proposal
networks. ArXiv:1506.01497 [Cs]. http://arxiv.org/abs/1506.01497

[20] He, K., Gkioxari, G., Dollár, P., & Girshick, R. (2018). Mask r-
cnn. ArXiv:1703.06870 [Cs]. http://arxiv.org/abs/1703.06870.

[21] Long, J., Shelhamer, E., & Darrell, T. (2015). Fully convolutional
networks for semantic segmentation. 2015 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 3431–3440.
https://doi.org/10.1109/CVPR.2015.7298965.

[22] Redmon, J., Divvala, S., Girshick, R., & Farhadi, A. (2016). You only
look once: Unified, real-time object detection. 2016 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 779–788.
https://doi.org/10.1109/CVPR.2016.91.

[23] Redmon, J., & Farhadi, A. (2017). Yolo9000: Better, faster,
stronger. 2017 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 6517–6525.
https://doi.org/10.1109/CVPR.2017.690

[24] Joseph Redmon, & Ali Farhadi. (2018). YOLOv3: An Incremental
Improvement. ArXiv: 1804.02767 [Cs]. https://arxiv.org/abs/1804.02767.

[25] Tsoumakas, G., & Katakis, I. (2007). Multi-label classification: An
overview. International Journal of Data Warehousing and Mining, 3(3),
1–13. https://doi.org/10.4018/jdwm.2007070101

[26] Lin, T.-Y., Dollar, P., Girshick, R., He, K., Hariharan, B., & Belongie, S.
(2017). Feature pyramid networks for object detection. 2017 IEEE

Conference on Computer Vision and Pattern Recognition (CVPR), 936–
944. https://doi.org/10.1109/CVPR.2017.106

[27] Ding, S., Long, F., Fan, H., Liu, L., & Wang, Y. (2019). A novel yolov3-
tiny network for unmanned airship obstacle detection. 2019 IEEE 8th
Data Driven Control and Learning Systems Conference (DDCLS), 277–
281. https://doi.org/10.1109/DDCLS.2019.8908875.

[28] Mao, Q.-C., Sun, H.-M., Liu, Y.-B., & Jia, R.-S. (2019). Mini-yolov3:
Real-time object detector for embedded applications. IEEE Access, 7,
133529–133538. https://doi.org/10.1109/ACCESS.2019.2941547.

[29] Fang, W., Wang, L., & Ren, P. (2020). Tinier-yolo: A real-time object
detection method for constrained environments. IEEE Access, 8, 1935–
1944. https://doi.org/10.1109/ACCESS.2019.2961959.

[30] Adarsh, P., Rathi, P., & Kumar, M. (2020). YOLO v3-Tiny: Object
Detection and Recognition using one stage improved model. 2020 6th
International Conference on Advanced Computing and Communication
Systems (ICACCS), 687–694.
https://doi.org/10.1109/ICACCS48705.2020.9074315.

[31] Xiao, D., Shan, F., Li, Z., Le, B. T., Liu, X., & Li, X. (2019). A target
detection model based on improved tiny-yolov3 under the environment of
mining truck. IEEE Access, 7, 123757–123764.
https://doi.org/10.1109/ACCESS.2019.2928603.

[32] Meet Jetson, the Platform for AI at the Edge. Available online:
https://developer.nvidia.com/embedded-computing (accessed on 28 April
2021).

[33] Jetson Nano Developer Kit. Available online:
https://developer.nvidia.com/embedded/jetson-nano-developer-kit
(accessed on 28 April 2021).

[34] Jetson TX1 Module. Available online:
https://developer.nvidia.com/embedded/buy/jetson-tx1 (accessed on 28
April 2021).

[35] Jetson TX2 Module. Available online:
https://developer.nvidia.com/embedded/jetson-tx2 (accessed on 28 April
2021).

[36] NVidia JETSON AGX XAVIER: The AI Platform for Autonomous
Machines. Available online: www.nvidia.com/en-us/autonomous-
machines/jetson-agx-xavier/ (accessed on 28 April 2021).

[37] Jetson AGX Xavier Developer Kit. Available online:
https://developer.nvidia.com/embedded/jetson-agx-xavier-developer-kit
(accessed on 28 April 2021).

[38] NVidia Jetson AGX Xavier Delivers 32 TeraOps for New Era of AI in
Robotics. Available online: devblogs.nvidia.com/nvidia-jetson-agx-
xavier-32-teraops-ai-robotics/ (accessed on 28 April 2021).

[39] Everingham, M., Van Gool, L., Williams, C. K. I., Winn, J., & Zisserman,
A. (2010). The pascal visual object classes (Voc) challenge. International
Journal of Computer Vision, 88(2), 303–338.
https://doi.org/10.1007/s11263-009-0275-4

[40] Lin, T.-Y., Maire, M., Belongie, S., Bourdev, L., Girshick, R., Hays, J.,
Perona, P., Ramanan, D., Zitnick, C. L., & Dollár, P. (2015). Microsoft
coco: Common objects in context. ArXiv:1405.0312 [Cs].
http://arxiv.org/abs/1405.0312

[41] Shen, Z., Liu, Z., Li, J., Jiang, Y.-G., Chen, Y., & Xue, X. (2019). Object
detection from scratch with deep supervision. ArXiv:1809.09294 [Cs].
http://arxiv.org/abs/1809.09294

[42] Zhang, F., Luan, J., Xu, Z., & Chen, W. (2020). Detreco: Object-text
detection and recognition based on deep neural network. Mathematical
Problems in Engineering, 2020, 1–15.
https://doi.org/10.1155/2020/2365076

[43] Hossain & Lee. (2019). Deep learning-based real-time multiple-object
detection and tracking from aerial imagery via a flying robot with gpu-
based embedded devices. Sensors, 19(15), 3371.
https://doi.org/10.3390/s19153371.

[44] Murthy, C. B., Hashmi, M. F., Bokde, N. D., & Geem, Z. W. (2020).
Investigations of object detection in images/videos using various deep
learning techniques and embedded platforms—A comprehensive
review. Applied Sciences, 10(9), 3280.
https://doi.org/10.3390/app10093280.

https://doi.org/10.1007/s11263-013-0620-5
https://doi.org/10.1007/s11263-013-0620-5
https://developer.nvidia.com/embedded-computing
https://developer.nvidia.com/embedded/jetson-nano-developer-kit
https://developer.nvidia.com/embedded/buy/jetson-tx1
https://developer.nvidia.com/embedded/jetson-tx2
http://www.nvidia.com/en-us/autonomous-machines/jetson-agx-xavier/
http://www.nvidia.com/en-us/autonomous-machines/jetson-agx-xavier/
https://developer.nvidia.com/embedded/jetson-agx-xavier-developer-kit
http://devblogs.nvidia.com/nvidia-jetson-agx-xavier-32-teraops-ai-robotics/
http://devblogs.nvidia.com/nvidia-jetson-agx-xavier-32-teraops-ai-robotics/

	I. Introduction
	II. Implemented object detection algorithm in robot system
	A. Region Proposal Based Framework
	1) Region with CNN (R-CNN): The original paper “Rich feature hierarchies for accurate object detection and semantic segmentation” ‎[11] elaborates one of the first breakthroughs of the use of CNNs in an object detection system called the ‘R-CNN’ or ‘R...
	2) Fast R-CNN: R-CNN model took a huge amount of time to train the network. Girshick et al. ‎[17] built another faster object detection algorithm known as Fast R-CNN to circumvent this problem. Instead of starting with the regions proposal module and ...
	3) Faster R-CNN: Faster R-CNN is the third iteration of the R-CNN family, developed in 2016 by Shaoqing Ren et al ‎[19]. Similar to Fast R-CNN, the image is provided as an input to a convolutional network that provides a convolutional feature map. Ins...
	4) Mask R-CNN: Mask R-CNN is an extended version of faster R-CNN for pixel level segmentation. Mask R-CNN ‎[20] works by adding a branch for predicting segmentation masks on each Region of Interest (RoI), in parallel with the existing branch for class...

	B. Regression/Classification Based Framework
	1) YOLOv1: YOLO ‎[22] uses an innovative strategy to resolving object detection as a regression problem, it detects bounding box coordinates and class probabilities directly from the image.
	2) YOLOv2: Since YOLOv1 suffers from localization errors and low recall predictions, the YOLOv2 ‎[23] shows a lot of improvement to increase the speed vs accuracy trade-off.
	3) YOLOv3: YOLOv3 ‎[24] is an improved version of YOLOv2. First, YOLOv3 can give multi-label classification ‎[25] (independent logistic classifiers) to adapt to more complex datasets containing many overlapping labels. Second, YOLOv3 predicts bounding...
	4) YOLOv3 Tiny: Tiny YOLOv3 is a lightweight target detection algorithm applied to embedded platforms based on YOLOv3. Therefore, the running speed is significantly increased, but detection accuracy is reduced ‎[27], ‎[28], ‎[29], ‎[30], ‎[31].

	III. Experiments
	A. Embedded systems
	B. Datasets

	IV. Results
	A. Accuracy comparison
	B. Speed comparison

	V. Conclusion
	References

