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Abstract—State of art approaches for localization and mapping
is based on local features in images. Along with this, modern
augmented and mixed reality devices allow building a mesh of
the surrounding space. Using this mesh map, we can solve the
problem of cross-device localization. This approach is indepen-
dent of the type of feature descriptors and SLAM used onboard
the AR / MR device. The mesh could be reduced to the points
cloud, which takes only vertices. We propose the approach for
co-localization of AR / MR devices using point clouds which
do not depend on algorithms onboard the device. We analyzed
various algorithms for registering point clouds and discuss of it
limitation for the co-localization problem.

Index Terms—Indoor collaborative localization, augmented
and mixed reality devices, point cloud registration.

I. INTRODUCTION

Localization and mapping are the main technical capabilities
of modern mixed reality systems and robotics. This function
allows connecting the real and digital world into a single
reality. For people to collaborate in mixed reality or for people
and robots to work together, they need to be localized in a
single coordinate space. In addition, localization of devices is
also required for a content position on a pre-built map.

Nowadays, devices solve the problems of localization and
mapping on board. However, there is a trend towards cloud
computing and moving content localization to the cloud. For
example, there are systems Microsoft Azure Spatial Anchors
[1], Niantic [2], Google Cloud Anchors [3], etc. These systems
send key points and descriptors to the cloud for content
localization.

Modern systems have several limitations of collaborative
localization. Co-localization with devices using different fea-
tures is impossible. [4] In addition, various systems use various
simultaneous localization and mapping (SLAM) algorithms
and have hardware acceleration for them. For example, various
features can be used, such as SIFT [5] or SOSNet [6].
Moreover, existing devices will lag behind the new SLAM
algorithms. This makes the systems impossible to co-localize
with each other. In addition to the above, it is difficult or
impossible for a human to perceive a map consisting of
features. This imposes a restriction on the remote installation
of content on the map.

There is a common functionality for constructing a mesh
map of the real environment in mixed reality systems. The
mesh map should geometrically represent the real environ-
ment. Respectively, on different systems, regardless of the
algorithms, these maps will be similar to each other in the
same place. However, the mesh itself has a lot of information
and is difficult to transfer and save, so we propose to reduce
the spatial map to a point cloud consisting only of the mesh
vertices. As a result, we will get a sparse cloud of points that
are easier to save and transfer. At the same time, this point
cloud will be readable for human perception, which could help
to use it for content location.

In this paper we analysis of point cloud registration methods
with modifications. Our general goal is to develop an approach
capable of solving the problem of indoor mixed reality cross-
device localization. We collected a new dataset with pairs of
reconstructed point clouds for one environment.

Our first stage is experimental efficiency comparison of four
global registration methods on real point clouds of indoor
environments to know which methods of registering point
clouds are suitable for solving the problem of MR devices
co-localization and to understand which parameters of the
algorithm determine more high robustness and probability of
point cloud registration success.

Our second stage is a more detailed analysis of the effec-
tiveness for more perspective registration methods capable of
solving the problem of collaborative localization for different
parameters and methods modifications. As a modification, we
added and used a local feature descriptor Weighted Height
Image (WHI) [7] in addition to the default and often used
one Fast Point Feature Histogram (FPFH) [8]. Our third stage
is the efficiency analysis of the hybrid approach: feature
correspondence-based methods + ICP which are proposed to
solve the problem of co-localization of mixed reality devices.

In our final stage, we discuss the weak points of the
investigation approach and obtained results, which can be
useful for fine-tuning of approach for collaborative localization
in real scenarios.



II. RELATED WORK

In this section, we consider the fundamental foundations
of the algorithms under study and their capabilities. In the
registration problem, we are given two 3D point clouds A =
{ai}Ni=1 source and B = {bi}Mi=1 target point clouds with
ai,bi ∈ R3. Many algorithms exist to solve this problem. One
of the most often used approaches for point cloud registration
is Iterative Close Point (ICP) [9].

A. Standard-ICP

This algorithm solves the L2-norm registration problem
to estimate rigid motion such as rotation R ∈ SO(3) and
translation t ∈ R3 between source A and target B point clouds,
which minimizes the objective L2-error function:

E(R, t) =

N∑
i=1

∥Rai + t− bk∗∥2, (1)

where ai is i point of source cloud and bk∗ is the closest
point of target cloud to transformed ai-point. Defined L2-
error is non-convex, because there are non-convex constraints.
Standard ICP algorithm solves this problem iteratively that
alternate between estimating the transformation by (1), and
finding closest-point correspondences. Although ICP charac-
terized by its simplicity and effectiveness, it is guarantees
convergence to a local minimum only [9]. Hence, ICP needs a
good initial pose between point clouds for global convergence.
Some variants of ICP [10], [11], [12], [13] have suggested to
use robust cost functions to improve convergence, but they
are still local methods and don’t provide guarantee global
convergence.

B. ICP-based point cloud registration methods

As a rule in real scenarios, point clouds from several devices
have large relative displacement, and rotation error can be
near 360 degrees for one of Euler angles. Therefore to solve
the matching problem of point clouds, it is required to use
global methods of registration that do not depend on good
initialization.

1) Go-ICP: Globally Optimal ICP (Go-ICP) [14] is the
point cloud registration method providing an optimal global
solution without initial guess. To find global solution authors
of Go-ICP method use BnB (Branch-and-Bound) [15] algo-
rithm extending to search 3D motion SE(3) = SO(3)× R3.
Authors apply domain parameterization which compactly rep-
resents 3D rotation search space as a solid radius-π ball in R3

and for translation part domain is represented as a bounded
cube [−ξ, ξ] where ξ can be easily set. Also they bounds
L2-norm error function [14]. Domain parameterization and
bounding functions allow to apply BnB search to a problem
(1). To sum up, the Go-ICP method presents the integration
of two main processes: global BnB search and the local ICP
search that helps each other to reach the global minimum of
the objective function.

2) Bayesian-ICP: While Go-ICP is deterministic approach
to registration point clouds, there is also a probabilistic ap-
proach such as algorithm Bayesian-ICP [16]. Bayesian-ICP
combines ideas from stochastic gradient descent-ICP (SGD-
ICP) [17] and stochastic gradient Langevin dynamics (SGLD)
[18] that allows estimating a pose distribution. For each
iteration of SGD-ICP, small mini-batches Mk from the source
cloud instead of the full point cloud are formed and associated
with closest points in the target cloud as in Standart ICP
to solve the optimization problem (1). SGLD idea is to add
the right amount of noise to SGD optimization which allows
converging to the posterior distribution. Therefore general
SGD-ICP update rule is modified by adding Gaussian noise
ηk ∼ N (0, Aα) and prior p(ϑ) over the transformation pa-
rameters θ, so general update rule for Bayesian-ICP becomes
following:

ϑk+1 = ϑk− α

2
A
(
−∇ log p(ϑk)+Ng⃗(ϑk,Mk)

)
+ηk, (2)

where N is size of point cloud, and ∇ log p(ϑk) is gradient
for prior distribution, α is learning rate, A ∈ R6×6 acts as a
pre-conditioner and g⃗ is gradient of objective function (1).

C. Correspondence-based point cloud registration methods

Correspondence-based registration method is another ap-
proach to solve registration problem providing a global so-
lution. The most perspective algorithms of correspondences-
based registration methods are Fast Global Registration (FGR)
[19] and Teaser++ [20]. They use invariant to rotations
and translations feature descriptors to build correspondences
between point clouds. Feature descriptors continue to be
improved (robustness to noise, to occlusion, to clutter and
etc., compactness, descriptiveness), also including using neural
networks to this day.

1) Feature descriptors: Fast Point Feature Histograms.
Fast Point Feature Histograms [8] is a 33-dimensional local
feature descriptor that describes the local geometry of space
around a point in a 3D point cloud. This descriptor represent
a simplified version of Point Feature Histograms (PFH), but
it keeps the discriminative power of the PFH and can be
calculated in milliseconds time [21], due to the computational
complexity of the algorithm is O(k) compare with O(k2) for
PFH.

Weighted Height Image descriptor. Weighted Height
Image descriptor [7] (WHI) is a compact 3D local feature
descriptor for describing the 3D local shape in the point cloud.
When FPFH is classified as an algorithm based on Rotation-
Invariant Metrics (RIM), WHI feature descriptor is based on
Local Reference Frame (LRF). LRF based descriptors have
clear advantages compared with Rotation-Invariant Metrics.
Firstly, descriptors estimate a rotation-invariant local frame
(LRF), which is more repeatable and robust to occlusions
and clutter. Secondly, using LRF simplifies the process of
coding information, because rotation invariance is not needed
consideration, and allows to save the original information
about point cloud. In addition, WHI feature descriptor can



have a maximum compactness - dimension 16, without much
loss in precision.

2) Fast Global Registration: Fast Global Registration is
correspondence-based registration method that consists of the
following main submodules: Advanced Matching and trans-
formation estimation [19]. Firstly, for each point in source A
and target B point clouds feature points are extracted. Then
F(B) is a set of source feature points, and F(A) is set of
target feature points. Secondly, Advanced Matching algorithm
is used to build correspondences by using feature points and
also to prune partially wrong pairs of them. It consists of 3
steps. First step: build set KI pairs points by computing nearest
neighbors between feature points F(B) and F(A). Second and
third steps: apply reciprocity test on KI to get KII and tuple
test on KII to get KIII set to prune correspondences [19]. And
finally, FGR use building and pruning correspondences to find
a transformation matrix T that aligns two points cloud, it is
solved the optimization problem with the following objective
function:

E(T) =
∑

(b,a)∈KIII
ρ(∥b−Ta∥), (3)

where ρ is the penalty term. This penalty function is very
important because a well-chosen penalty allows to control
the shape of the objective function (3) by rapidly doing
validation and pruning of bad correspondences to remove them
from consideration. Also, it allows to solve optimization for
one pass, without recomputation during the optimization as
in the Standard-ICP algorithm. Authors use Geman-McClure
estimator as penalty function [22]. The optimization problem
(3) can not be solved directly. Therefore authors use Black-
Rangarajian duality [23] that allows to optimize the objective
function (3) very fast.

3) Teaser++: Teaser++ registration method can be divided
conditionally into the following main submodules: Advanced
Matching, Maximal Clique Inlier Selection (MCIS) and trans-
formation estimation [20]. Authors of Teaser++ also in FGR
use Advanced Matching [19] to build correspondences (ai,bi)
by using extracted feature points for each point of source A
and target B point clouds. Next, they use MCIS algorithm to
prune a significant amount of outliers. Then Truncated Least
Squares (TLS) optimization problem is formulated to estimate
the unknown transformation based on pruned correspondences:

min
s>0,R∈SO(3)t∈R3

N∑
i=1

( 1

β2
i

∥bi − sRai − t∥2, c2
)
, (4)

where s > 0 is estimated scale, R ∈ SO(3), t are estimated
rotation and translation, βi is given bound of Gaussian noise
for i correspondence, c2 is threshold to penalty the correspon-
dences with big residual. This formulation allows to take into
account that the set of correspondences has an extreme amount
of outliers and that inliers have unknown Gaussian noise. For
solving the optimization problem (4) the authors introduced
two invariant measures: the Translation Invariant Measurement
(TIM), and the Translation and Rotation Invariant Measure-
ment (TRIM) [20]. It created the possibility to decouple

transformation estimation on three separate estimations: scale,
rotation, and translation. The scale and translation estimation
problems are solved in polynomial time using an adaptive
voting algorithm [24]. The TLS rotation estimation is relaxed
to tight semidefinite relaxation problem and solved fast by
using graduated non-convexity [25].

III. DATASETS

In our work, we compare point cloud registration algorithms
for the co-localization problem of mixed reality devices. The
algorithm takes point clouds of the reconstructed environment
from one and the other device. The reconstructed point cloud
only approximates the geometric parameters of the user’s real
environment but does not describe it with high accuracy. So
data set is required to consist of reconstructed point clouds
pairs for different locations, and each pair of point clouds
should have different point distributions from each other.

Dataset A. KTH Longterm and ICL-NUIM datasets.
The dataset A consists of two sub-datasets: KTH Longterm1

and ICL-NUIM2. KTH Longterm was collected autonomously
by a Scitos G5 robot with an RGB-D camera on a pan-tilt.
It contains data from 8 different areas of the KTH office
environment. Half of the areas are rooms and the others are
corridors. ICL-NUIM sub-dataset was collected by RGB-D
camera sensor and contains data of two rooms: living and
office rooms. As a result, the first dataset contains 11 pairs of
KTH Longterm point clouds and 2 pairs of ICL-NUIM point
clouds. In both cases, the data is not collected from mixed
reality devices.

Dataset B. Indoor HoloLens dataset. We collected dataset
B using two mixed reality devices: Microsoft HoloLens 1st and
2nd gen. Each device builds a mesh map of the environment.
We have explored one space from two devices and used
Windows Device Portal to download the Spatial mapping.
Spatial mapping is the mesh, we take only vertexes as a
point cloud. Dataset B contains sparse point clouds of 4 areas:
three different rooms and a corridor. We obtained 20 pairs of
point clouds, where each pair of point clouds is obtained from
different devices.

To evaluate the accuracy, we created a synthetic dataset of
point clouds based on real point clouds from dataset B. We
selected large samples of point clouds and took different size
parts from each large cloud. Each part has the ground truth
transformation matrix is set for each pair randomly in the range
of [−90, 90] degree for the rotation and [−50, 50] cm for the
translation. The basic idea of creating a synthetic dataset is that
we know the actual position of a pair of point clouds relative
to each other before registration. Hence, we can estimate the
accuracy of the point cloud pair alignment.

IV. METHODOLOGY

A. Efficiency evaluation of registration algorithms

At the first stage, we evaluated the effectiveness of four
registration algorithms: Go-ICP, Bayesian-ICP, FGR, and

1https://strands.readthedocs.io/en/latest/datasets/kth lt.html
2http://redwood-data.org/indoor/dataset.html



Teaser++. FGR and Teaser++ were also evaluated depending
on Advanced Matching usage modes and different feature
descriptors namely FPFH, WHI16, WHI36. The used feature
radius did not exceed 150 cm with the ratio close to the
recommended, which is described in the next subsection. The
effectiveness assessment consisted of the average registration
time and the rate of successful alignments. There is no ground
truth information about the actual transformation between
pairs of point cloud origins. Thus, the alignment success for
each pair was evaluated visually, as shown in the example
(Fig. 1). All algorithms were tested on datasets A and B.

(a) Successful alignment

(b) Non-successful alignment

Fig. 1: Examples of visually successful and non-successful
registrations. The left half of the sub-figures shows state before
registration and the right half shows a state after registration

B. Accuracy and runtime analysis of registration methods:
FGR and Teaser++ for different local feature descriptors

At the second stage, we studied the efficiency of the
algorithms depending on the different radius of the features
FPFH, WHI16, and WHI36. We use synthetic data set for
accuracy and runtime evaluation. To find rotation error, we
use roll, pitch, and yaw angles calculated for transformation
matrix Ta obtained by the algorithm and for ground truth
transformation matrix Tg:

ϕ = atan2 (r32, r33), θ = arcsin (−r30),
ψ = atan2 (r21, r11),

(5)

where rij - is ij element of the rotation part in transfor-
mation matrix. Rotation error Rerror is defined as summary
error of roll (ϕerror), pitch (θerror), yaw (ψerror) angles:

ϕerror = |ϕg − ϕa|, θerror = |θg − θa|,
ψerror = |ψg − ψa|,

Rerror = ϕerror + θerror + ψerror.
(6)

Translation error terror was calculated following:

terror =
√
(xg − xa)2 + (yg − ya)2 + (zg − za)2. (7)

We also evaluated the success rate of registrations for FGR
and Teaser++. For FPFH, WHI16, WHI36 local feature de-
scriptors we calculated metrics for different feature radius, but
we kept optimal ratio downsampling (rd)/normal (rn)/feature
(rf ) radius equal 1 : 2 : 5 for FPFH and optimal ratio
downsampling (rd)/feature (rf ) radius equal 1 : 5 for WHI
types feature descriptors. FPFH ratio is recommended by
authors of FGR and WHI ratio is selected by us for a more reli-
able comparison of correspondence-based registration methods
with different feature descriptors. Successful alignment of
two synthetic point clouds we considered the fulfillment of
accuracy condition:

Rerror ≤ 0.03rad; terror ≤ 1.0cm. (8)

Such accuracy requirements we considered as satisfactory
for the co-localization of mixed reality devices. Regarding the
time of registration, it is enough not more than 5 seconds for
successful synchronization of the devices, because it is enough
one registration with further update and refinement. Thus, the
success in registration we considered the fulfillment of the
following conditions: 100% cases satisfy accuracy condition
(8) and runtime bellow 5 s.

C. Accuracy and runtime analysis of hybrid approaches

In the third stage, we evaluated the registration efficiency of
the hybrid approach (correspondence-based method [FGR or
Teaser++] as coarse + ICP as local refinement). The hybrid ap-
proach allows us to use the advantages of the two techniques.
The first one does not require good initialization for the point
clouds registration, but the usage of downsampling limits the
accuracy of the method. The second has high convergence
accuracy (moves to a local minimum, converges globally only
when close to the global minimum), but it requires having
the appropriate initial position of point clouds relative to each
other. So the first method allows to exclude the disadvantages
of the second, and the second method allows to exclude the
disadvantages of the first.

We used different numbers of iterations of ICP to evaluate
the effectiveness of the hybrid approach and to discover the
working range of the radius of features. We used previous
metrics and we add a new criterion for a more flexible
evaluation: 90% of cases satisfy accuracy condition (8) and
runtime 10 s. Since accuracy and runtime can be improved
by using the hybrid approach sub-modules improvements and
more powerful hardware.

All experiments were done by using Point Cloud Library
(PCL) [26] on a laptop with CPU AMD Ryzen 7 4800HS.

V. RESULTS

A. Efficiency evaluation of registration algorithms on real
datasets

Tables I and II show estimated registration time and the rate
of success alignments of point clouds pairs. The algorithms
based on ICP: Go-ICP and Bayesian-ICP have shown a very
low success rate of alignments with high registration time.



TABLE I: Results for FGR and Teaser++ on dataset A.

Method Feature Advanced Average Alignment
Matching runtime (ms) success (%)

Go-ICP - - 24427 8
Bayesian-ICP - - 1647 54

FGR

FPFH 390 100
WHI16 On 371 100
WHI36 752 100
FPFH 442 100

WHI16 Off 441 100
WHI36 823 92

Teaser++

FPFH 409 100
WHI16 On 428 100
WHI36 823 100
FPFH 1847 100

WHI16 Off 1209 100
WHI36 1897 100

Features-based algorithms (FGR and Teaser++) significantly
outperform ICP-based ones in terms of both successful align-
ments and execution time.

The rate of successful alignments by algorithms on dataset
B is lower than on dataset A. This indicates that dataset B has
cloud pairs that are more difficult for registration. In dataset
B, more than half of the point cloud pairs have a small overlap
fraction: less than 50%, and more different points distribution.
The registration success of a point cloud pair depends on the
overlap fraction as well as the initial degree of point cloud
sparsity. The overlap fraction determines how many pairs of
point clouds have common geometric parts. In other words,
the greater the overlap area of the point clouds, the easier
it is for the registration algorithm to find correspondences
between them and match them to each other. As for the
sparsity degree of the point clouds, it affects the degree of
dissimilarity in point cloud distribution. Sparse clouds may
have more dissimilar point distributions than dense clouds.

When the Advanced Matching for FGR algorithm is turned
off, the probability of successful point cloud alignment tends
to decrease. At the same time for the Teaser++, when Ad-
vanced Matching is turned off, the percentage of successful
point cloud alignments on the contrary increases and reached
100% with local feature descriptors WHI16 and WHI36. It
happens because probably the pruning correspondences part of
Advanced Matching rejects not only wrong correspondences
but also part of good ones, and MCIS submodule of Teaser++
selects inliers effectively.

B. Accuracy and runtime analysis of FGR and Teaser++ for
different feature descriptors

Figures 2 and 3 show accuracy and runtime results of FGR,
Teaser++ alignments with different local feature descriptors.
The rotation and translation accuracy of the methods with local
feature descriptors WHI16, WHI36 exceeds the accuracy of
the methods with FPFH, while the runtime of methods with
feature WHI16 is the shortest for feature radius more than 50
cm. In figures 2 and 3, we can notice that point cloud registra-
tion translation accuracy is less than the downsampling level
for feature radius 150 cm or less. Voxel Grid Downsampling

TABLE II: Results for FGR and Teaser++ on dataset B.

Method Feature Advanced Average Alignment
Matching runtime (ms) success (%)

Go-ICP - - 24158 0
Bayesian-ICP - - 1564 5

FGR

FPFH 219 68
WHI16 On 223 53
WHI36 419 79
FPFH 259 42

WHI16 Off 262 26
WHI36 458 42

Teaser++

FPFH 219 63
WHI16 On 213 58
WHI36 446 63
FPFH 365 79

WHI16 Off 382 100
WHI36 641 100

allows saving the surface structure since a centroid point is
calculated for each voxel. Hence, on the one hand, the small
voxel size allows to slightly reduce the number of calculations
without losing information about the surface geometry. On the
other hand, with a large feature radius, we significantly speed
up calculations. Therefore, there is a compromise between

TABLE III: Results for FGR and Teaser++ on synthetic dataset

Method Feature ICP Feature radius (cm)
35 50 75 100 150 200 250

FGR

FPFH

-
1

10
100

WHI16

-
1

10
100

WHI36

-
1

10
100

Teaser++

FPFH

-
1

10
100

WHI16

-
1

10
100

WHI36

-
1

10
100

: 100% cases below accuracy 0.03 rad and 1 cm
: 90% cases below accuracy 0.03 rad and 1 cm
: less 90% cases below accuracy 0.03 rad and 1 cm
: 100% ceses below runtime 5 s
: 100% cases below runtime 10 s
: less 100% cases below runtime 10 s



(a) Rotation estimation (b) Translation estimation (c) Runtime estimation

Fig. 2: FGR FPFH vs FGR WHI16 vs FGR WHI36.

(a) Rotation estimation (b) Translation estimation (c) Runtime estimation

Fig. 3: Teaser++ FPFH vs Teaser++ WHI16 vs Teaser++ WHI36.

accuracy and runtime, that is the optimal range of the feature
radius satisfying some accuracy and runtime requirements of
real applications.

C. Accuracy and runtime analysis of hybrid approaches: FGR
and Teaser++ with ICP

We used FGR and Teaser++ with ICP as a hybrid approach.
Table III shows the summary evaluation of FGR and Teaser++
for different types and parameters of local feature descriptors
and ICP iterations. The table shows the radius ranges of the
feature descriptors that correspond to the defined accuracy
and execution time criteria. The table III can be useful in
determining the optimal feature radius range needed to solve
the collaborative localization problem. After our tests, we can
notice an increase in registration accuracy for all features
radius, not more than 150 cm. There is no increase in accuracy
for the WHI16 feature radius of more than 150 cm. It appears
because the FGR and Teaser++ methods have poor accuracy
for the WHI16 feature radius greater than 150 cm. This creates
faulty initialization for ICP and as a result, ICP falls to a
local minimum. It is significant that the hybrid approach for
FPFH feature radius of more than 150 cm lets ICP converge
to a global minimum. The accuracy of FGR and Teaser++
for FPFH feature the radius of more than 150 cm is greater
than for WHI feature type. It is possible that WHI for a
large feature radius partially loses its descriptiveness, unlike

the FPFH feature. Based on the results with the synthetic
dataset, it cannot be reliably determined feature descriptor is
best used in a real application. But the results on real data
show the superiority of WHI feature over FPFH. Therefore
we recommend using WHI feature in the feature radius range
before 150 cm, and for more feature radius to use FPFH.

VI. CONCLUSION

In this paper, we proposed the approach to mixed real-
ity cross-devices localization and show its performance and
limitations. We estimated the efficiency of four point cloud
registration methods: Go-ICP, Bayesian-ICP, FGR, Teaser++
on real point clouds of rooms obtained by Microsoft HoloLens
(1st and 2nd gen) MR devices. Feature correspondences-based
methods: FGR and Teaser++ showed milliseconds runtime
efficiency and a high probability of successful alignments
compared with ICP based methods: Go-ICP, Bayesian-ICP.
We tested a new WHI feature descriptor for the point cloud
registration method. On synthetic data, we tested a hybrid
approach and provided the table with different algorithm pa-
rameters and performance for co-localization MR devices. For
co-localization MR devices in a real scenario, we recommend
using WHI feature descriptor with feature radius before 150
cm, as it is more robust to interference and descriptive on real
data compared to FPFH.

In future works, we would like to extend the approach
for co-localization of the multi-robot system and multi mixed



reality device in one space. We will investigate the methods
for localization of MR devices in large pre-built and labeled
maps.
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