
Grover Binary Search for Discrete Quantum
Optimization

Ayaz Baykov
Innopolis University
Innopolis, Russia

a.baykov@innopolis.university

Stanislav Protasov
Innopolis University
Innopolis, Russia

s.protasov@innopolis.university

Abstract—Contemporary quantum algorithms, being efficient
theoretically, fail to run on real QPUs. One reason for these
failures is the algorithm’s probabilistic nature, which is amplified
by imperfections in hardware implementation. Grover search
is such a probabilistic method, which enables other methods in
quantum optimization and machine learning. In this work we
improve the theoretical worst case complexity of Grover Adaptive
Search by replacing iterations with binary search. We observe
in the experiments that our method shows better success rate in
general, and is sufficiently better for a specific type of optimization
landscapes with plateaus.

Index Terms—Grover search, quantum computing, quantum
optimization, knapsack problem

I. INTRODUCTION

Solving optimization problems is one of the most promising
areas of quantum computing applications. Typically, we restate
a well-known NP-hard discrete optimization problem using
completely different mathematics. This trick allows to make
use of operations, which are proven to be faster when run on
a quantum processing unit (QPU). Such methods are Shor’s
algorithm [1], which converts a factorization problem into a
frequency estimation task; quantum version of discrete Fourier
transform [2], which instead of a straightforward “algorithmic”
implementation utilizes unitary property of transformation
operator. And, of course, the Grover search [3], which instead of
doing naive iterations, benefits from parallel predicate execution
for the argument superposition. Grover’s algorithm, as well as
Shor’s algorithm, is not just an algorithm. This is a framework
that requires a quantum oracle implementation. These methods
can be used for solving various problems, if these problems
provide a corresponding oracle. Here we concentrate on the
application of Grover search to discrete optimization, and
we illustrate our findings with a simplified knapsack packing
problem.

II. PREVIOUS WORK

In this paper, we present an improvement for Grover
Adaptive Search (GAS) algorithm [4]. The original algorithm
is an iterative hybrid general-purpose framework (utilizing both
CPU and QPU computations) to solve discrete optimization
problems. This framework supposes we can convert a problem
statement into the following conditions:

Slow(x) = {low < cost(x)} ∧ valid(x), (1)

where x is a candidate solution among N possible (here-
inafter we use N to denote a problem search space cardinality),
cost is a function to maximize, and valid predicate is
responsible for problem constraints. For example, in the packing
of knapsacks, given a set A, to choose an optimal subset:

x ⊆ A,

N = 2|A|,

valid(x) = weight(x) ≤ limit

(2)

The predicate Slow(x) is then encoded as a quantum
oracle – special form of a quantum transformation: (x, t)→
(x, t ⊕ sf(x)) which satisfies the restriction for any quantum
operation to be invertible. It is used inside Grover search
algorithm, which solves the problem of satisfiability of Slow(x)
by providing one of the solutions. If there exists x satisfying
Slow(x), cost(x) value is used to update low boundary until
convergence. Let us define the cost sol of the unknown optimal
solution. In the worst case, the lower bound improves by the
constant each iteration, thus the classical (CPU) part of the
method will trigger the QPU method O(sol − low) times. In
section III we show, how to improve worst case complexity
estimation to O(log(s̃ol− low)). Here s̃ol means the solution
estimation from above. We support our theoretical findings
with practical observations in section IV. In the discussion
section V, we show the cases where this improvement is
practically important.

III. METHODOLOGY

We call our optimization method Grover Binary Search
(GBS). The method relies on the binary search algorithm,
which for k sorted objects guarantees O(log k) complexity
on the CPU. It also has a quantum implementation [5] with
the same complexity estimation. Here, we propose to use this
algorithm instead of the iterative search proposed in the original
paper.

If we explicitly reproduce the original idea and replace the
GAS iteration with a binary search, we can use a function
count(Slow(x)). The function must return the number of
solutions satisfying the oracle. This function is non-increasing
for the variable low, so it can be used in binary search.
Such counting function can be implemented with quantum
counting method [6], which is just an application of Quantum

Phase Estimation [7]. Unfortunately, this method requires
doubled number of qubits, O(log(N)) runs of controlled
Grover iteration, plus QFT † [2] (which uses order of 2 logN
gates). Also, this method provides an approximation of count
value, instead of exact answers.

To overcome these complications, we propose replacing the
nondecreasing count with another nondecreasing function:

anylow(x)
def
= count(Slow(x)) > 0. (3)

In our method, we search for the smallest low, for which the
number of solutions is 0: argmin

low
[count(Slow(x)) = 0]. For

this condition, both functions count and any return the same
answer. To implement the function any, we follow the standard
Grover search procedure for unknown number of answers,
which requires O(logN) non-controlled Grover iterations.
Any Grover search answer x, which satisfies Slow(x), means
anylow(x) = True.

Altogether, our method in the worst case will run
O(log2(s̃ol − low)) (better than is GAS) iterations of binary
search, each of which will run O(log(N)) Grover iterations
(same as in GAS). The pseudocode of our method is shown
in the listing 1.

Algorithm 1: Binary Grover search for optimization
problem

Input: P – problem search space
Result: R – solution
low ← Greedy1(P);
high← Greedy2(P); // here we greedily

estimate maximum cost(x)
R← ∅;
λ← 8

7 ;
do

M ← 1;
while M ≤

√
|P | do

i← pick uniformly from{1...M};
mid = ⌊ low+high

2 ⌋;
x← GroverSearchi(P,mid);// run i

Grover iterations to find
x ∈ P

if valid(x) and cost(x) > low then
low ← cost(x);
R← x;

else
M ←M ∗ λ;

end
end
high← mid;

while high− low > 1;
return R;

IV. IMPLEMENTATION AND ANALYSIS

We test our solution on a simplified knapsack packing
problem: we assign cost equal to weight for the sake of a

simpler input and circuit. This allows us to run simulator
tests for a larger search space while keeping the problem
exponentially hard. In a classical 0/1 problem statement, we
would need an additional quantum register for weights, limiting
our simulation opportunities.

In section I we mentioned, that Grover search is a generic
framework, thus it requires additional implementations. First,
we need to implement a quantum oracle for the problem. In
the case of a simplified knapsack, our oracle should implement
the following condition:

Slow(x) = {low <
∑

item∈x

cost(item) ≤ limit}. (4)

Note that in a classical 0/1 knapsack packing, the oracle
should check

∑
item∈x weight(item) ≤ limit instead. In our

implementation we avoid this by setting cost = weight.
We do our implementation and tests using IBM’s Qiskit

framework v0.31.0 [8], running on x64 Ubuntu Linux. We use
the basic noiseless probabilistic simulator BasicAer. In this
work, we do not consider noise and concentrate on probabilistic
effects only.

Circuit 1 represents an example of oracle implementation. We
use controlled QFT adders [9] to implement the sum of weights.
Uncontrolled adders, together with CNOT applied to a data
sign qubit, are used to implement inequalities. This technique
was described in chapter 5 of the book [10]. Uncomputing
is a block of inverse adders to bring data and key qubits to
the initial state. We add +1 to lower bound to replace strict
inequality low < cost with non-strict 0 ≤ cost−(low+1), and
+1 to upper bound to convert cost ≤ limit into cost−(limit+
1) < 0. We avoid unnecessary manipulations by encoding the
limit as low + (limit− low) = 5 + 2.

We run a simulator experiment to verify the validity of our
implementations. Let the available items be {6, 3, 5, 4, 2, 3},
with an estimated low cost equal to 12, and limit = 16. Now,
in case of GAS, the oracle would check for answers above 12
and the result of the Grover search would be as in Figure 2a.
Most likely it will get answer 14 and repeat the procedure 2b.
At the same time, GBS would immediately build an oracle
to search for answers above 14. This shows how in binary
approach we can reach better values with less iterations for
the cases where GAS was not lucky enough.

The main experiment is planned as follows. We test GAS
against GBS on a random sets with 4..11 items (which is
equivalent to 16..2048 problem search space). Each item’s
weight is uniformly sampled from the 1..63 integer range. The
knapsack limit is uniformly chosen from [

∑
items
4 ,

∑
items]

integer range. We ran 32 random experiments for each size of
the problem. According to the proposed algorithm 1, for the
estimation of low, the algorithm Greedy1 takes the sum of
the first elements that does not exceed limit, while Greedy2
for the upper bound high takes the value limit. Among the
values which differ between the methods, we measure number
of times QPU circuit is launched, and the correctness of given
answers.

Fig. 1: Example oracle implementation for S5(x) condition: 5 + 1 ≤ cost(x) < (5 + 2) + 1. Controlled addition operations
implement cost(x) function (costs of knapsack candidates), while uncontrolled addition set inequality boundaries.

(a) Results of Grover search for oracle checking 12 <
cost(x) <= 16

(b) Results of Grover search for oracle checking 14 <
cost(x) <= 16

We present our results of QPU launches in figure 3. We
observe two major patterns. First, the median number of

launches for both methods does not increase with the size
of the problem. This is a projection of theoretical prediction,
that the number of iterations is expected logarithm for GAS and
guaranteed logarithmic for GBS, with respect to the upper limit.
In our experiment, the maximum limit grows linearly with the
number of items, and thus logarithmically for the problem
search space size. This means here we observe log logN
tendency, which grows very slow to catch. Second observation
is that GBS launches twice as many quantum circuits. This
pattern holds for oracle launch counts as well – this metric
is proportional to the number of utilized quantum gates. This
value is essential in practice, while, for example, the IonQ
QPU pricing schema is per gate execution [11]. Code profiling
showed that our method can spend a lot of launches to prove
that there is no item in the range.

Proposed GBS method inherits the deterministic bisection
method, thus incorrect Grover Search is the only source of
mistakes in the result. At the same time, the nondeterministic
GAS convergence procedure can be an additional source of
errors. We observed, that our method has a systematically
higher success rate on experimental data (see figure 4). We
think that this observation supports the deterministic approach.

V. DISCUSSION

We want to emphasize that our experiments are neither a
proof of supremacy in precision nor a justification for the
worse gate expenditure. We showed that for a random problem
generation with no specific tuning, our method achieves correct
solution with a high probability, and shows expected asymptotic
complexity characteristics.

Nevertheless, we want to share two observations derived
from the experiments. First, both GAS and proposed GBS
methods strongly depend on the lower bound estimation at the
first iteration. If the constraints on the problem are loose (in our
example low estimation is unsatisfactory), the Grover search

Fig. 3: Comparison or Grover Adaptive Search (GAS) and proposed method (GBS). Number of QPU circuit launches.

Fig. 4: Success rate of GAS and proposed (GBS) algorithms.

algorithm behaves extremely badly, as it instead amplifies the
probabilities of incorrect solutions. In cases where the number
of valid solutions is close to half of the search space, Grover
search is equivalent to random sampling from the search space.
Only a good estimation of a lower bound can kickstart a
method, which uses Grover search inside.

Second, GAS and GBS, probably, best suit different prob-
lems. Imagine a problem search space with a plateau of multiple
similar costs and a single optimal solution above the plateau.
The iterative method can easily get stuck on this plateau,
making minor improvements at each iteration, while the binary
search proceeds if it sees a solution “ahead”, with higher costs.
To support the observation, we compose a synthetic example,
which has a very low chance of succeeding with GAS, but
works great for GBS: [21, 19, 1, 1, 1, 1, 1, 1, 1, 1] with
the limit of 39. We ran 80 experiments for each method, and
GBS found a correct answer in 91% of the launches, while
GAS could succeed only once. In the failure cases, the errors
of both methods did not exceed 10% (see Figure 5). For

practical problems, we recommend using both the GAS and
GBS methods if the behavior of the cost function is unknown.

VI. CONCLUSION

In this paper, we present a novel optimization method, the
Grover Binary Search, which combines the brilliant idea of
Grover Adaptive Search with the deterministic nature of the
binary search. The new method appears to be asymptotically
better, but in practice it consumes more quantum gates, which
is essential in the NISQ era. However, in the simulations, our
method showed a systematically better success rate. Moreover,
we could dedicate a separate subset of optimization cost
landscapes, which suit much better for GBS method. We
support our findings with the experiment, where with GBS we
could achieve 91% of success rate, which can be significant
for problems where it is crucial to find global optimum.

Additionally, while today’s QPU access is mostly cloud-
based, we think that it is perspective to design fully-quantum
methods to avoid multiple data encoding-decoding. Binary

Fig. 5: Empirical cumulative distribution of GAS and GBS
answers compared to correct on a synthetic test.

search has a quantum version, thus it is potentially possible to
build a quantum-only implementation of GBS. This method
will be qubit-hungry, but it can still be preferred to multiple
CPU-QPU communication cycles.

REFERENCES

[1] P. W. Shor, “Algorithms for quantum computation:
Discrete logarithms and factoring,” in Proceedings 35th
annual symposium on foundations of computer science,
Ieee, 1994, pp. 124–134.

[2] D. Coppersmith, An approximate fourier transform
useful in quantum factoring, 2002. arXiv: quant- ph/
0201067 [quant-ph].

[3] L. K. Grover, “A fast quantum mechanical algorithm for
database search,” in Proceedings of the twenty-eighth
annual ACM symposium on Theory of computing, 1996,
pp. 212–219.

[4] A. Gilliam, S. Woerner, and C. Gonciulea, “Grover
adaptive search for constrained polynomial binary opti-
mization,” Quantum, vol. 5, p. 428, 2021.

[5] A. M. Childs, A. J. Landahl, and P. A. Parrilo, “Quantum
algorithms for the ordered search problem via semidef-
inite programming,” Phys. Rev. A, vol. 75, p. 032 335,
3 2007. DOI: 10.1103/PhysRevA.75.032335. [Online].
Available: https://link.aps.org/doi/10.1103/PhysRevA.75.
032335.

[6] G. Brassard, P. Høyer, and A. Tapp, “Quantum counting,”
in Automata, Languages and Programming, K. G. Larsen,
S. Skyum, and G. Winskel, Eds., Berlin, Heidelberg:
Springer Berlin Heidelberg, 1998, pp. 820–831, ISBN:
978-3-540-68681-1.

[7] A. Y. Kitaev, Quantum measurements and the abelian
stabilizer problem, 1995. arXiv: quant - ph / 9511026
[quant-ph].

[8] M. S. A. et al, Qiskit: An open-source framework
for quantum computing, 2021. DOI: 10.5281/zenodo.
2573505.

[9] T. G. Draper, “Addition on a quantum computer,” arXiv
preprint quant-ph/0008033, 2000.

[10] E. R. Johnston, N. Harrigan, and M. Gimeno-Segovia,
Programming Quantum Computers: essential algorithms
and code samples. O’Reilly Media, 2019.

[11] IonQ. “Google cloud platform: Ionq quantum cloud.
https://console.cloud.google.com/marketplace/product/ionq-
public/ionq.” (), [Online]. Available: https : / /console .
cloud . google . com / marketplace / product / ionq -
public/ionq. (accessed: 07.02.2022).

https://arxiv.org/abs/quant-ph/0201067
https://arxiv.org/abs/quant-ph/0201067
https://doi.org/10.1103/PhysRevA.75.032335
https://link.aps.org/doi/10.1103/PhysRevA.75.032335
https://link.aps.org/doi/10.1103/PhysRevA.75.032335
https://arxiv.org/abs/quant-ph/9511026
https://arxiv.org/abs/quant-ph/9511026
https://doi.org/10.5281/zenodo.2573505
https://doi.org/10.5281/zenodo.2573505
https://console.cloud.google.com/marketplace/product/ionq-public/ionq
https://console.cloud.google.com/marketplace/product/ionq-public/ionq
https://console.cloud.google.com/marketplace/product/ionq-public/ionq

	Introduction
	Previous work
	Methodology
	Implementation and analysis
	Discussion
	Conclusion

