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Abstract—We propose a concept for a gravity compensator
designed for prismatic joints. The compensator depends on
the suspension of linear springs together with transmission
mechanisms to achieve constant application of force along the
sliding span of the joint. We introduce the use of self-locking
worm gears to ensure isolation of spring forces. A 2-DoF system
which consists of a revolute and a prismatic joints is investigated
with the proposed compensator. We introduce the use of pin-slot
mechanism to transform rotational motion of the revolute joint
into linear wire displacement. We introduce a design methodology
of the compensator and selection of parameters to achieve static
balancing. The results of simulation show complete compensation
of gravity force leading to zero actuator effort.

Index Terms—Prismatic joints , Static Balancing, Gravity
Compensation, Manipulator Design

I. INTRODUCTION

Robots experience large static forces while operating in
large works paces. These static forces are mainly generated by
gravity which means a large part of the energy spent during
operating goes to support robot’s weight [1], [2].

Various approaches were proposed to compensate gravity. A
classical approach is to use counter-weight as shown in Fig. 1a.
This approach allows the manipulation of larger payloads,
however it increases the total potential energy of the system
[3]. Other approaches are based on auxiliary mechanisms with
spring suspension similar to the one in Fig. 1b. The advantage
of using springs is that they are light in weight hence, the
increase of the system’s potential energy is insignificant.
Moreover, springs can store potential energy which reduces the
energy required for operation. Many mechanisms for gravity
compensation are summarized in [4]. More mechanisms are
presented in detail in [5]–[14]. These mechanisms achieve
different results between complete and partial compensation
for links’ weight.

The majority of those mechanisms address gravity com-
pensation for revolute joints. Moreover, a limited number
of researches addressed compensation for prismatic joints.
Gravity compensation for prismatic joints is addressed in [15]–
[17]. The main drawback of these proposed mechanisms is
their size if to be realized in design as shown in Fig. 2. A
challenge regarding gravity compensation for prismatic joints
is that the center of mass shifts accordingly with motion.

In this paper, we are proposing a preliminary concept of
a gravity compensator for prismatic joints. The mechanism

(a) Gravity compensation
using counter-weight

(b) Gravity compensation
using auxiliary mechanism

Fig. 1: Examples of gravity compensation
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Fig. 2: Examples of gravity compensators for prismatic joints
[4]

depends on spring tension together with a combination of
pulleys and gear transmission. Moreover, this mechanism aims
to compensate gravity force on prismatic joints at different ori-
entations. Also, the proposed concept includes compensation
of gravity for both joints in 2-DoF case where a prismatic joint
is mounted on a revolute joint. The concept requires changing
the design of manipulators to include the new components that
we propose. The concept depends on analytical decoupling of



(a) linear actuator at an arbi-
trary configuration with spring
suspension

(b) A geometric representation
of the constant-tension mecha-
nism

Fig. 3: Gravity compensator for a prismatic joint in vertical
configuration

effort terms and add equivalent spring-based components to
produce counter-force. A combination of those components
can analytically eliminate those decoupled terms.

II. COMPENSATOR FOR A 1-DOF PRISMATIC JOINT AT AN
ARBITRARY CONFIGURATION

The goal of this section is to present a simple case of gravity
compensation for a 1-DoF system of a prismatic joint. The
aim here is to show how to compensate forces on a prismatic
joint with a counter-force generated by a linear spring. Fig. 3a
shows a geometric representation of a prismatic joint with
the moving part of mass m at an arbitrary configuration.
The mass induces a reaction effort τ in the actuator in the
reverse direction to achieve equilibrium. Taking gravitational
acceleration g pointing downwards, the actuator’s effort can
be as follows:

τ = m g (1)

where τ is the actuator’s effort, m is the mass of the moving
link and g is the gravitational acceleration.

To generate counter-force, we can add a spring with stiffness
k connecting the moving part of the actuator to its base. Setting
the spring with a proper pre-tension s0 will generate a counter
force sp.

k s0 = Fsp (2)

We can achieve complete compensation by setting a proper
pre-tension value s0 to generate spring force Fsp that can
counter-balance the link’s weight.

s0 =
m g

k
(3)

As the prismatic joint performs linear motion, such compen-
sator construction can not perform compensation at different

joint configurations. This creates the need to design a mech-
anism that can keep this compensation force constant at any
joint extension. A constant-tension mechanism is shown in
Fig. 3b. A rack is coupled with the joint’s slider and meshed
with a pinion gear. The pinion gear is coupled with a bevel
gear to transform the motion on perpendicular axes. A worm
gear is coupled with the perpendicular bevel gear and meshed
as input to a gear transmission to achieve motion locking. A
pulley is coupled with the output of the gear transmission.
The role of the pulley is to wind or unwind the wire when
the slider moves up or down. A spring is fixed on the body of
the joint and connected to the winding pulley through an idle
pulley mounted on the moving part of the prismatic joint. This
element arrangement makes the moving part of the prismatic
joint supported on two parallel segments of the wire and the
tension in this wire is generated by the spring. This makes the
spring force needed half the weight of the link.

2T = m g (4)

where T is the tension force in the wire generated by the
spring.

From kinematics of the system, the relationship between the
joint’s motion and the change in the wire’s length as follows:

∆l = 2 q (5)

where q is the joint displacement and ∆l is the corresponding
change in the wire’s length.

This means that the retraction or expansion of the wire’s
length should be twice the slider’s displacement q. This
dictates the transmission ratio between the pinion gear and
the pulley to be 1:2.

III. COMPENSATOR FOR 2-DOF RP SYSTEM

The goal here is to compensate gravity force for a 2-DoF RP
system. Adding rotation increases the problem’s complexity
as the gravitational torques variate non-linearly with rotation
and the prismatic joint presents a moving center of mass.
A 2-Dof RP system is in Fig. 4. The system consists of a
revolute joint and a prismatic joint. The system consists of
two masses m1 and m2 at distances lc1 and lc2 from the center
of rotation, respectively. The revolute joint rotates with angle
q1 and the prismatic joint slides with distance q2. This makes
the gravitational torque in the revolute joint as follows:

τ1 = (lc1 m1 + lc2 m2) g cos(q1) (6)

where τ1 is the torque effort of the revolute joint.
As the prismatic joint slides with value q2, we can refor-

mulate the variable lc2 as follows:

lc2 = ls0 +q2 (7)

where ls0 defines a minimum distance between m2 and the
center of rotation.

As for effort in the prismatic joint:



Fig. 4: A geometric representation of 2-DoF RP system

Fig. 5: A geometric representation of pin-slot mechanism

τ2 = m2 g sin(q1) (8)

where τ2 is the force effort of the prismatic joint.
This equation shows that effort in the prismatic joint is non-

linearly changing accordingly with the rotation angle of the
first joint. The pin-slot mechanism shown in Fig. 5 is designed
to compensate such non-linearity. The mechanism consists of
a slot that rotates with angle θ around point O and moves
linearly through point O. A pin p is fixed at a constant vertical
distance r from point O and slides along the slot. As point p
is fixed, the distance between the slot and point changes as
follows:

s = r sin(θ) (9)

where s is the distance between the slot and point O and r is
the distance between points O and p.

We can use this mechanism to compensate gravity effort in
the prismatic joint as shown in Fig. 6. The pin-slot mechanism
is used to variate the tension in the spring according to rotation
angle q1. To statically balance prismatic joint effort, we can
properly choose spring stiffness k and pin distance r.

k1 r sin(q1) =
1
2

m2 g sin(q1) (10)

Fig. 6: A geometric representation of 2-DoF RP system with
prismatic joint compensator

And accordingly, we can choose the value of spring stiffness
k1.

k1 =
m2 g
2 r

(11)

Equations (10) and (11) show parameter selection to com-
pensate gravity effort in prismatic joint at any orientation and
the mechanism presented in Fig. 3b shows how to maintain
constant spring force along prismatic joint’s motion. Com-
pensation for the revolute joint can be achieved using the
construction shown in Fig. 7. We can compensate gravity
torque in the revolute joint by connecting a spring between
points A and B. Point A is fixed at a vertical distance a from
the ground while point B has an initial displacement b from
the center of rotation and sliding along the link. Point B is
attached to a slider mounted on a pulley-belt mechanism. The
belt moves the slider with distance q∗ along the link which
means sliding of point B is a ratio of the displacement of
the prismatic joint which can be achieved by gear reduction.
Another spring is connecting between points C and D where
point C is fixed on vertical distance c and point D is fixed
with distance d along the link . Which makes the vector
representing the position of point B and D as follows:

B⃗ =
[
(b+q∗) cos(q1), (b+q∗) sin(q1)

]T (12)

D⃗ =
[
d cos(q1), d sin(q1)

]T (13)

To choose the proper value of the spring’s stiffness, we need
to satisfy equilibrium condition with sum of torques equals to
zero. Torque generated by the springs can be calculating using
the cross product (B⃗× B⃗A) and (D⃗× D⃗C) .

τsp,2 = c d k2 cos(q1) (14)



Fig. 7: A geometric representation of 2-DoF RP system with
prismatic and revolute joints comepensators

where τsp,1 is the torque generated by spring CD.

τsp,3 = a (b+q∗) k3 cos(q1) (15)

where τsp,2 is the torque generated by spring AB.
From (6), (14) and (15), we can apply the equilibrium con-

dition to calculate the value of springs’ stiffness coefficients.

τsp,2 + τsp,3 = (lc1 m1 + lc2 m2) g cos(q1) (16)

We can select our parameters to distribute the torque be-
tween both spring in a way that would eliminate the right-hand
side of (16).

τsp,2 = lc1 m1 g cos(q1) (17)

from this equation we can choose the value k2.

k2 =
lc1 m1 g

c d
(18)

and similarly for the second spring while substituting with
(7).

τsp,3 = (ls0 +q2) m2 g cos(q1) (19)

which makes k3 as follows:

k3 =
(ls0 +q2)

(b+q∗)
m2 g

a
(20)

For this equation to hold, the ratio between (ls0 + q2) and
(b+q∗) should be constant.

(ls0 +q2)

(b+q∗)
=

m2 g
a k3

(21)

This equation indicates that we can determine the distance
b and the reduction ratio between q2 and q∗.

b = ls0

a k3

m2 g
, q∗= q2

a k3

m2 g
(22)

This means that we can control the span where point B can
slide same as the location of this span. This gives freedom in
realizing the mechanism which can be quite complex.

IV. DISCUSSION

This system presents a concept for gravity compensation
for prismatic joints for robotic systems. The concept depends
on analytically decoupling joints’ effort expressions and com-
pensating them with equivalent mechanical mechanisms using
linear springs. By coupling these mechanisms with the robotic
system’s joints, they can produce counter-balancing efforts
that leads to static equilibrium without the need for actuator’s
effort.

Designing a gravity compensator for prismatic joints is
challenging because of the moving center of mass. Unlike
links coupled with revolute joints which has a defined center of
mass, prismatic joints change the location of the center of mass
which increases the non-linearity of the actuator’s effort when
moving along an inclined axis. The moving spring attachment
point helps tackling this problem making the counter-balancing
mechanism variate in proportion to motion span.

The use of worm gears is important for realizing this
concept. When the worm gear is of self-locking type, it can
hold reverse torque through friction. This ensures isolation
of forces through the introduction of internal reaction force
that blocks any backward torque. It acts as a one-way gate
to torque as it can pass torque in one way and blocks reverse
torque. Another advantage of worm gears is that they have high
reduction ratio that reduces speed and magnifies the torque,
which makes motion resistance less significant.

V. RESULTS

A joint trajectory was tested in simulation. Parameters of
manipulator and gravity compensator were assigned according
to Table I. parameters a,b,c, and d were assigned arbitrarily
while values k1,k2,k3 were calculated from Eqs. (11), (18) and
(20). Ratios b/ls0 and q∗ : q2 were calculated using Eq. (22).
Simulation of joint torques show complete compensation of
gravity force along the Cartesian trajectory.

The value of spring coefficients depend on their mounting
location on the manipulator. Moreover, mounting points of the
springs can depend on the spring coefficient which gives more
flexibility in the design process, especially, with limited space.
However, the choice of the mounting points of the sliding
spring is limited depending on the reduction ratio between the
actuator’s sliding range and the spring’s mounting point sliding
range. This means that the mounting location for the spring
compensating the torque of the moving mass depends on the
transmission ratio. It is practical to determine the mounting
location prior to transmission ratio. Transmission ratio should
reduce the span of motion to keep the sliding spring within
the spacial limits of the link.



TABLE I: Design parameters used in simulation

parameter value unit
manipulator parameters

l1

mm

1000
l2 500
lc1 500
ls0 250
lc2 ls0 +q2
m1 kg 1
m2 0.5

compensator parameters
b/ls0 1/2

q* : q2 1:2
a

mm

400
b 125
c 400
d 500
k1

N/m
16.33

k2 24.5
k3 24.5

(a) Actuator’s trajectory and modeled effort

(b) Counter effort and compensation

Fig. 8: Simulation results of effort and counter-balance

The relationship between the span of prismatic joint motion
q2 and the span of the spring connection point B is presented
in Fig. 9. We can see how the transmission ratio can affect
the sliding of point B. From the graph, we can see if the
transmission ratio is 1 : 1, point B needs to extend beyond
the physical limits of the first link l1. However, with higher
transmission values, the motion span of point B gets smaller.
The value of b determines the location of point B when q2 = 0.
As a design problem, either 20 or 22 can be used to determine
the design parameters. A decision of either values k3 or (ls0 +
q2/(b+q∗) can be made and then equations 20 or 22 can be
used to determine the other parameter.

VI. CONCLUSION

This paper proposes a preliminary concept for a passively
adapting gravity compensator dedicated for rotating prismatic
joints. The compensator depends on tension springs and gear

Fig. 9: Modeled relationship between prismatic joint distance
q2 and the span of point B based on different transmission
ratios

transmission to produce corresponding counter-effort to com-
pensate gravity. The design of the compensator’s components
is parameterized to suit different constructions of manipulators
and space limitations. The sliding spring mounting point
provides the ability to compensate gravity torque generated
by a sliding mass at an angle. The wire retracting mechanism
provides the ability to generate constant force along the sliding
range of the linear actuator.

In the future, It is necessary to study dynamics of the
system. Moreover, studying this concept with other common
manipulator designs and analyzing stiffness properties of the
resulting system.
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