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Abstract—Sensor data fusion is one of the important solutions
for the perception problem in self-driving cars, the main aim
is to enhance the perception of our system without losing real-
time performance and therefore,it is a trade-off problem and its
often observed that most models that have a high environment
perception cannot perform in a real-time manner.

In this paper we discuss how we can address this problem using
a 3D detector model (Complex-Yolov3) and a 2D detector model
(Yolo-v3) , then applying the Image-Based Fusion method that
could make a sensor fusion between Lidar & camera information
with a fast and efficient late fusion technique that is discussed
in detail in this paper.

Then we use the mean average precision metric in order to
evaluate our object detection model and to compare the proposed
approach with them as well.

In the end, we show the results on the Kitti data set as well
as our real hardware setup, which prove that our proposed
approach could work efficiently in a real-time manner.

I. INTRODUCTION

Object detection is a fundamental problem in many fields
and has a huge impact on self-driving cars, relevant reliability
and safety can be achieved with the help of different sensors
such as ultrasonic, cameras, radars and Lidars mounted on
vehicles with redundancy resolution techniques and sensor
fusion algorithms.

Classification approaches used in recent years have focused
on image recognition research. To produce proposals for
bounding boxes, these approaches generate object proposals
such as sliding windows [1], edge boxes [2], choose search
[3], Multiscale Combinatorial Grouping (MCG) [4], and then
utilize a CNN pipeline [5], [6] to perform recognition for
the suggested object region. The high computational cost is a
typical drawback. Furthermore, cameras lack information on
the 3D location, orientation, and shape of objects, as well as
fluctuating lighting levels, which results in inaccurate object
region proposals.

Using the complementary information offered by LIDAR
and cameras to obtain very precise object positions and clas-
sifications for self-driving cars is one solution. In other words,
good fusion techniques can play a great role in minimizing
the disadvantages of both sensors and allows autonomous
vehicles to work in real-time with accurate precision for object
detection.

II. LITERATURE REVIEW

Many recent researches have focused on the merging of
data from multiple sensors. A typical method is to merge the
LIDAR point cloud data with the camera images at the pixel
level, with a matching RGB color pixel for each LIDAR point
within the image [7]. Another approach is to take the data
features of each sensor and combine them to identify and track
moving objects [8] -[9]. They introduced a Multi-View 3D
network (MV3D) for 3D object recognition in [10], which in-
tegrates several views of LIDAR point cloud data with images
to propose and classify 3D objects. For small object classes, an
enhanced deep learning model called AVOD (Aggregate View
Object Detection) [11] has been presented that multimodally
fuses data provided by point cloud and images to build high-
resolution feature maps for the production of trustworthy 3D
object suggestions. They use continuous convolutions to fuse
LIDAR and image feature maps at various resolution levels
for 3D object recognition in [12]. Rather than recognizing
things independently from LIDAR point clouds or images,
this method combines the final findings acquired by the two
sensors.

Sensor fusion is one of the important solutions for percep-
tion problem in self-driving cars and autonomous systems in
general for many aspects like localization, perception, etc. We
need to improve the perception of our system without losing
real-time performance. At the same time, it is a trade-off
problem where most of models that have high environmental
perception cannot perform in a real-time manner and vice
versa for models which can work in real-time will neglect
important information which is necessary for enhancing the
perception. Therefore, it is essential to continue tracking the
performance of the developed sensor fusion technique to not
lose either perception or real-time performance at the cost of
the other.

III. METHODOLOGY

A. Complex-Yolo Model (Lidar)

For the 3D object detector, we use the Complex-YOLOv3
model. It works by prepossessing the Lidar point-cloud data
and transforms them to a birds-eye-view (bev) RGB-map. The
Complex-YOLO network takes the bev RGB map as input.



Figure 1. 3D object detector model (Complex-Yolo) for point cloud working
idea and results [13]

Figure 2. 3D object detector (Complex Yolo) Architecture [13]

It uses a simplified YOLOv3 CNN architecture extended by
complex angle regression and E-RPN (Euler Region Proposal
Network) to detect accurate multiclass-oriented 3D objects
while still operating in real time.

B. Yolo-v3 Model (Images)

For 2D objects detector, we will use the Yolo-v3 model,
as it gives less inference time when working with images in
the KITTI dataset (15 ms) compared to the Yolo-V4 model
with inference time (45 ms), we will also not resize the input
because resizing the inputs gives poor results when we tried
to do so.

Figure 3. 2D object detector (Yolo-V3) Architecture

Figure 4. Image Based Fusion

C. Image Based Fusion

1) Summary of the working algorthim: We are using
bounding boxes obtained from 3D object detector (Complex-
yolo) that are less likely to be objects and overwriting labels
of those objects with that Region Of Interests (ROIs) by a 2D
object detector (Yolo-v3).

The detected objects from the 3D object detector are then
projected onto image planes, and then if the ROIs of clusters
and ROIs by a detector are overlapped, the labels of clusters
are overwritten with those of ROIs by the 2D object detector.
The Intersection Over Union (IoU) is used to determine
whether there are overlaps between them.

The advantage in image-based fusion is that we avoided
the other problems of the above methods of taking fusion
to higher dimension space as the point cloud-based fusion
and also we avoided problems of associations of ROI through
different frames as the Kalman filter, tackling our problem in
a 2D dimension in which concerning the current frame only
makes it less computationally expensive to do the fusion and
gets higher perception with being able to work in real time.

2) Adding Feature of getting objects distance: We used the
point cloud projected onto the image and mapped it to the
bounding boxes that are output from the Yolo-V3 model.

The problem is that the lidar data is sparse, so not every
pixel in the image will have a correspondent point from lidar.
We managed to tackle this problem by using the Nearest-
Neighbor technique.

The bounding box of the Yolo-V3 model is an array of
4 values [x, y, w, h]. we are interested in the center of the
object that we will donate it as C, where C = (x+ w

2 , y+
h
2 ).

We will then try to find the assigned lidar projected point
for C, but since lidar is sparse, most probably we will not
find a point assigned to this center pixel C, so we need to
search for the nearest point to C. We will donate the projected
point cloud to the image plane as a vector P , where P =
[p1, p2...pn] now we will search for the nearest element in P ,
which is [p1, p2....pn] vector to point C which is (Cx, Cy) so
we will try find minimum distance from C to pi distance =√
(Cx − pxi)2 + (Cy − pyi)2



Figure 5. Precision-Recall Curve of 3D object detector (Complex-Yolo) model
for classes Cars, Cyclist & Pedestrians

Figure 6. Precision-Recall Curve of 2D object detector (Yolo-v3) model for
classes Cars, Cyclist & Pedestrians

IV. EVALUATION AND DISCUSSION

For evaluation of our models, we use the average precision
metric (AP) and frames per second (FPS). For more informa-
tion, refer to the appendix.

V. EVALUATION OF COMPLEX-YOLO

After 220 epoch of training for the tiny Complex-Yolo,
which took 2 days,the following results are obtained. In Figure
5 is the precision recall curve from which we obtain the
average precision of each class.

In table I are the average precision of each class and then
the average of all classes and frames per second for the model.

VI. EVALUATION OF YOLO-V3

After 2000 epoch of Yolo-V3 training, which took 4 hours,
the following results are obtained. In Figure 6 is the precision
recall curve from which we obtain the average precision of
each class.

In table I are the average precision of each class and then
the average of all classes and frames per second for the model.

VII. EVALUATION OF IMAGE BASED FUSION

After applying image-based fusion in we could obtain the
following results.

In Figures 8 are the precision recall curves that we calculate
the average precision.

In Table I is the average precision of each class, and then the
average of all classes and the processing speed of the model.

Figure 7. Precision-Recall Curve of the fusion for classes Cars, Cyclist &
Pedestrians

Figure 8. Precision-Recall of Figure 5, 6, 8 in one Figure for comparison

In Figure 8 the red curve we can see that its the same as in
Figure 5 but with higher precision and the recall shift towards
right slightly, which is logical, as the average precision of
complex-yolo for cars is already so high 0.9625 but after the
fusion some true positives are added over the same ground
truth bounding box number, and the precision will mostly be
the same as the complex-yolo gives high precision already,
and that is to prove that the fusion can give better results as
the final average precision of the class cars is raised by 1% to
0.9725.

In Figure 8 blue curve we can see that it could address the
low precision at some point of the complex yolo model for the
cyclist class as shown in 5 with the help of the yolo-v3 model,
its standalone performance was not as high according to the
precision recall curve 6, which demonstrates that fusion can
give better results as the final average precision of the class
cyclist increased from 0.7756 of the complex yolo and 0.4196
of yolo-v3, to 0.7985 after fusion, which is better than both
models and gives an increase as 2% from the best result of
the complex yolo model.

In the green curve in Figure 8 we can see that it takes
the same shape as in Figures 6 5 starting from one, but
gives a slightly better average precision, the complex-yolo
and yolo-v3 have an average precision of 0.5440 and 0.4911
respectively. Fusion could give better results by raising the
average precision from 5% to 0.5943.

As we can see, the image and 2D range data fusion give
results better than the 2 models although it uses them to fuse
information and give better results which show the power
of fusion of the data in enhancing the performance of the



Table I
FUSION EVALUATION

Model/Class Cars Cyclist Pedestrians Average FPS

Complex-Yolo 0.9626 0.7756 0.5440 0.7607 50
Yolo-v3 0.7847 0.4196 0.4911 0.5651 66

Image Based Fusion 0.9725 0.7985 0.5943 0.7884 28

perception task problem.
Also, the speed dropped to 28 FPS because the models are

detecting sequentially, but in future work we will add parallel
threads, which will make both models work in parallel, so the
FPS will rise to 50 again for the proposed approach.

A. Results Visualization

1) KITTI Dataset: In the KITTI dataset these 7481 frames,
the frames are the RGB images taken from the camera and the
corresponding Lidar point-cloud data. Frames have different
locations and time stamps. We split those frames into training
and testing. Figures {9,10,11,12,13,14,15,16} visually show
the results of our models.

Figure 9. Camera front View

Figure 10. Frame 1 results visualization

In Figure 9 the green squares and the distance written are
the predictions of yolo-v3 that work with the image data, the
yellow and blue squares and the distance are the predictions
of yolo-complex that work with the lidar data. So when one
of them fails at some point, the other can support detecting
the object.

In Figure 10 is the birds-eye view RGB map of the lidar
point cloud, it is the same frame as in Figure 9, the green color
indicates height , the blue intensity of the reflected lidar signal,
the red is the density of points, yellow, and green squares are
predictions from the complex-yolo model.

Figure 11. Camera front View

Figure 12. Frame 2 results visualization

In Figure 12 we can see how sometimes the yolo-complex
model fails and the yolo-v3 model can support and give even
comparable results.

The failure is sometime due to the farther distance of the
object such that it will be hardly detected by Lidar as the rays
fired from the Lidar diverge and that makes far objects have
comparatively lesser points than near objects.

In Figure 13 we can see that the distance difference between
the two approaches has an error of 0-2 meters, depending on

Figure 13. Camera front View

Figure 14. Frame 3 results visualization



Figure 15. Camera front View

Figure 16. Frame 4 results visualization

two factors:
1) The nearest-neighbor point of the 2D approach which

gets the distance from the front part of object
2) the 3D approach gets the distance from the center of

the object , so in most cases the distance from the 2D
approach will have a smaller distance.

In Figure 15 we can see that 3D approach (Complex Yolo)
totally fail , which maybe due to different reasons as far
distance of object or weather conditions which may affect
Lidar sensor reading , only the 2D approach give us results
which is why its important to use Image based fusion , so they
support and give better results if they both detect same object
, if not then we will have higher detection rate so we don’t
miss an object undetected for a safe environment perception
of self driving cars.

2) Real Data: Figures 17 18 19 show a person testing the
algorithm on a real hardware lidar and camera, the fusion
was performed and the person was detected correctly as a
pedestrian.

In Figure 17 we can see that a false object was detected
but lidar didn’t detect it , and due to low confidence it was
neglected by the fusion algorithm.

In Figures 18 and 19 the 2D object detection and the 3D
object detection models could detect the person as a pedestrian
successfully with the effect that the person was annotated as
a pedestrian and the position was displayed later.

VIII. CONCLUSION

The approaches that work with point cloud directly have
higher average precision; however, they lack real-time perfor-
mance most of the time. On the other hand, approaches that
transform point cloud to bev RGB-map formats suffer from
information loss, which results in lower average precision but

Figure 17. False Detection

Figure 18. Positive Detection

better real-time performance, and some models as in Complex-
Yolo can give a good compromise by giving fair results and
still work in real-time. Object detection for 2D problem has
been significantly improved through the last decade, and there
exist models that can give fair results as well and work in
real-time as SSD (e.g yolo-v3). Fusion between previous two
approaches is one of the best solutions for the problem in self-
driving cars, and there has been significant interest in this area
to enhance the autonomous cars and mobile robot systems for
better perception of the environment. We passed data from

Figure 19. Positive Detection



Figure 20. Image Based Fusion

Lidar to the 3D object detector model (Complex-Yolo) and
evaluated it as a standalone model, also we did the same with
Camera and passed the images to the 2D object detector model
(YOLO-v3) and evaluated as a standalone model as well.

In our approach (Image-Based Fusion), as we can see in
Figure 20, we could see how it combines information to obtain
better results than the 2D object detection model and the 3D
object detection model, which show the power of data fusion
to improve the performance of the perception task problem for
self-driving cars.

However, the processing speed decreased to 28 FPS, which
can be improved by parallel processing. The proposed methods
have been implemented on the KITTI dataset as well as custom
generated datasets. The results show that the proposed method
enhances the results of individual methods that use point-cloud
data or image data.

IX. APPENDIX

For average precision, it is calculated as follows. After the
final predictions are determined, the predicted bounding boxes
could be measured against the ground-truth bounding boxes.

In order to calculate the mean average precision (mAP) for
each class and see how the object detector is doing; we will
first need to calculate the precision and recall for each class.

To do so, the number of true positives must be identified. If
a predicted bounding box overlapped a ground truth bounding
box by an IOU threshold (0.5), it is considered a successful
detection and the predicted bounding box is a true positive. If
a predicted bounding box overlapped a ground truth by less
than the threshold, it is considered unsuccessful detection, and
the predicted bounding box is a false positive. Precision and
recall can be calculated from true and false positives, as shown
in Figure 21

Precision =
True Positive

True Positive+ False Positive

=
count(True Positives)

count(all red boxes)
=

2

3

Recall =
True Positive

True Positive+ False Negative

=
count(True Positives)

count(all red boxes)
=

2

3

Figure 21. Precision-Recall

We need to get precision and recall at every IOU threshold
and then average it for each class, and then average it again
between all classes to get the mAP for the model.

When a model has high recall but low precision, the model
classifies most of the positive samples correctly, but it has
many false positives (i.e., classifies many negative samples as
Positive). When a model has high precision but low recall, then
the model is accurate when it classifies a sample as Positive,
but it may classify only some of the positive samples.

So, we need to find the threshold that gives us the best of
both; the average precision is the area under the curve of the
precision-recall curve.
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