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Abstract—In our work, we used data analysis and indirect
application of neural networks to identify patterns in the fre-
quency, time and spatial domains of brain electrical activity that
characterize COVID−19.

We found a predominance of α−rhythm patterns in the left
hemisphere in healthy people compared to people who have had
COVID−19. Moreover, we observe a significant decrease in the
left hemisphere contribution to the speech center area in people
who have undergone COVID−19 when performing speech tasks.

The findings show that the signal in healthy subjects is
more spatially localized and synchronized between hemispheres
when performing tasks compared to people who recovered from
COVID−19. We also observed a decrease in low frequencies in
both hemispheres after COVID−19.

EEG-patterns of COVID−19 are detectable in an unusual
frequency domain. What is usually considered noise in EEG-
data carries information that can be used to determine whether
or not a person has had COVID−19. These patterns can be
interpreted as signs of hemispheric desynchronization, premature
brain aging, and greater brain strain when solving simple tasks
compared to people who did not have COVID−19.

I. INTRODUCTION

While developing the EEG-based brain-computer interface,
we came across a significant inhomogeneity of the EEG-data.
Given the epidemiological situation, we hypothesized that this
heterogeneity may be related to the neurological consequences
of COVID−19.

In 2022, there are seven Human coronaviruses; some are
associated with severe respiratory diseases mostly: Middle
East respiratory syndrome CoV (MERS-CoV), SARS-CoV-1,
SARS-CoV- 2; while the others are associated with neuro-

logical complications: CoV-229E, HCoV-OC43, SARS-CoV-
1, and SARS-CoV-2 (COVID−19).

HCoV-229E and HCoV-OC43 RNA were shown to be
detected significantly more frequently in brain tissue autopsied
from Multiple Sclerosis (MS) patients than in the brain of the
donors who had no obvious clinical symptoms of MS [3] [6].

The scientific community saw the first published data
regarding neurological complications linked to SARS-CoV-
2 (COVID−19) in 2020. Neuronal damage appears to be
caused by direct, virus-mediated, and non-virus-mediated in-
jury. There are acute lesions, such as CNS demyelinating
events, encephalitis meningitis and myelitis, Guillain–Barre’
syndrome, Bell’s palsy, myasthenic disorders, hemorrhagic
stroke and subarachnoid hemorrhage, multiple ischemic in-
farcts, and epileptic status, [3] [4] [5].

Previously, we showed that despite the noisy signal, the
EEG data reveals patterns characteristic of the internal pro-
nunciation of word-movement commands [1]. That is, despite
the prejudice against the noisiness of the EEG-signal, this
signal provides meaningful data about very subtle processes
of mental functioning.

It is known that the alpha rhythm (α−rhythm) of electrical
activity of the brain with a frequency of 8 to 14Hz is best
expressed in the occipital areas of the brain. This α−rhythm
has the greatest amplitude in a state of quite wakefulness,
especially with eyes closed in a darkened room. Decreased
α−rhythm is characteristic of concentration (especially visual)
or mental activity. We wondered whether there were changes
in α−rhythm in people who had undergone COVID−19. We



were also interested in other patterns of frequency, time and
space domains. EEG-data make it possible to analyze a noisy
signal presented from different parts of the brain in different
frequency domains over a fairly long period of time — one
recording lasts about one hour.

An interesting frequency domain in the EEG-data is the
signal with a frequency greater than 50Hz. In the classical
approach to EEG analysis, this frequency range is not of
interest; however, there is data showing that the contribution
of this signal (> 50Hz) to the frequency patterns of EEG-data
increases with age and may indicate neurological changes [2].
We hypothesized that this increased presence of high fre-
quencies may characterize the neurological consequences of
COVID−19. In addition, we were interested in the detection
of spatial features of electrical activity of the brain after
COVID−19.

II. METHODS

A. Collecting the EEG Data

All subjects were of legal age, in good health, and voluntary
signed a consent to participate in the study. The subjects could
interrupt the study at any time without giving a reason. The
subjects provided information which included gender, age,
education, and occupation. The exclusion criteria for the study
were a history of head trauma, alcohol or other intoxication,
and epilepsy.

The dataset we used for the study consisted of 32−channel
recordings of EEG signal made at 250Hz during several ses-
sions of silent and vocalized speech of 105 subjects. The dry
plastic electrodes (Datwyler’s SoftPulseTM Medium, brush
type electrode) were placed according to the traditional 10−20
scheme. The ‘Afz’-channel was used as a reference electrode.
The word presentation signal was also captured with a light
sensor and included in data files as a mark.

Each experiment lasted from 5 to 14 sessions, depending
on the subject’s condition. Each session consisted of showing
ten words from the training dictionary in random order, with
repetitions allowed. During each session, the subjects were
asked to pronounce the words shown on the screen aloud
(verbalized speech) or silently (imaginary speech) without
removing the EEG equipment.

B. Eye Noise Filtering

We used the eye noise filtering based on a three-step
algorithm presented earlier [1]. For our study, we decided to
consider eye noise independently of brain activity.

C. Separation of Electrodes Into Left and Right Hemispheres

The separation of the electrodes into the left and right
hemispheres was performed taking into account the spatial
balance between the hemispheres and can be seen in Figure 1.

D. Downsampling

The sampling rate was downsampled using index masks
on the original EEG-data. For example, when we performed
downsampling from 250 Hz to 125 Hz, the first array contained

elements with even indices, and the second — with odd
indices. In the case of lowering the frequency to 62.5 Hz,
the indices were selected according to the remainder when
divided by 4.

E. Presenting the EEG-Data as a Two-Dimensional Vector

First, we cut the EEG-data into 2D vectors — 1024 long
(which is about 4 s, considering the sampling rate is equal to
250 Hz) and 32 wide (which is the number of EEG channels).

Second, we duplicated six ‘eye-noisy’ channels.
Third, using the downsampling algorithms presented above,

the sampling rate was downsampled from 250 Hz to 125 Hz
and the data were split into two separate samples (let us call
them ‘Sample 01’ and ‘Sample 02’) with dimensions of 40×
512.

Fourth, using the downsampling algorithms presented
above, we downsampled Sample 01 (Sample 02 separately)
from 250 Hz to 125 Hz and packed the resulting samples
into a 2D vector (80 × 512) and cut the first half into a
2D vector (80 × 256) each. In parallel, the sampling rate
was downsampled from 125 Hz to 62.5 Hz for Sample 01
(Sample 02 separately) and the resulting samples were packed
into a 2D vector (160× 256).

Fifth, in parallel, using the Eye Noise Filtering presented
above, we obtained six components of eye noise (6 × 256)
from six groups of channels from Sample 01 (Sample 02).

Sixth, taking into account the separation of electrodes into
the left and right hemispheres, we combined vectors into a
2D vector (256 × 256). All the obtained vectors were com-
bined according to the following order: eye noise of the left
hemisphere, downsampled tensors from the left hemisphere,
median from ‘Ft7’ and ‘T3’ channels, downsampled tensors
from the left and right hemispheres respectively, median from
‘Ft8’ and ‘T4’ channels, downsampled tensors from the right
hemisphere, eye noise of the right hemisphere.

The complete preprocessing scheme can be seen in Figure 2.

F. Neural Networks

We used a model including convolutional neural networks
ResNet with 2 layers of controlled recurrent units — Gated
Recurrent Unit (GRU) [7] [1]. The collected dataset was
split into three parts necessary for the training and evaluation
process of neural network models as follows. First, the set
of all the individuals who provided EEG recordings for our
study was split to form two disjoint groups of different size.
The data recordings corresponding to the smaller one formed
the test dataset, which consisted of 10% of the total dataset. A
larger group of recordings was mixed and split to form training
(70% of the initial data) and validation datasets (20%). In other
words, the train and validation datasets were constructed in a
classical way, while the test part of the dataset was formed
using an out-of-sample approach.



Fig. 1. Separation of electrodes into the left and right hemispheres with
number of channels and spatial balance between hemispheres.

G. Detection of a pattern of Neural Networks perception
through the nullifying kernel.

For the 2D vector (256×256) we applied a nullifying kernel
of size (32×32) with a stride equal to 12 and a padding equal
to 0.

The function applied to the kernel was the accuracy of the
binary classification of the trained neural network obtained on
the test dataset when this section of each 2D vector (256×256)
was zeroed on the test dataset. Thus, we obtained the contri-
bution of a certain area of a 2D vector (256×256) (frequency,
temporal and spatial domains patterns) to the accuracy of
binary classification (data from participants with diagnosed
COVID−19 history vs data from participants without such a
diagnosis).

The resulting vector was (16 × 16) and can be seen in
Figure 3 for healthy people (left) and people who have
undergone COVID−19.

III. RESULTS

Representing the signals from 32 EEG-channels as a set
of features of the frequency and time domain, we found a
predominance of α−rhythm patterns in the left hemisphere
in healthy people compared with people who have had
COVID−19. We see a significant decrease in the contribution
of the α−rhythm in the EEG-signal in both hemispheres
in people who have undergone COVID−19. Moreover, we
observe a significant decrease in the contribution of the left
hemisphere in the area of the speech center in people who have
had COVID−19 when performing speech tasks. Normally,
loss of α−rhythm indicates overstrain of the brain while
concentrating on a task. A decrease in the α−rhythm in people
who have had COVID−19 can be interpreted as signs of severe
brain tension when solving simple tasks.

The data show that the signal in healthy people is more
spatially localized and synchronized between the hemispheres
when performing tasks, than in people who have undergone
COVID−19. There is no frequency synchronization of the
hemispheres and there is a decrease in low frequencies in

Fig. 2. Presenting EEG-data as two-dimensional vectors.

Fig. 3. Patterns in time, space and frequency for healthy people (left) and
participants with diagnosed COVID−19 history (right). The darker the color,
the higher the contribution of this pattern to the binary classification accuracy
of the convolutional neural network.

the activity of both hemispheres in people who have had
COVID−19. This pattern can renew the already remaining
data on hemispheric desynchronization and signs of demyeli-
nation.

We observe a significant increase in the contribution of
high frequencies (> 80Hz) to the EEG-signal in the right
hemisphere in people who have had COVID−19. What is com-
monly thought of as noise in EEG data carries information that
can be used to determine if a person has had a COVID−19. or
not. An increase in this frequency domain may indicate signs
of premature brain aging.

IV. CONCLUSION

In our work, we have shown that EEG-patterns in the
temporal, spatial and frequency domains differ in people who
did not have COVID−19. and those who had. These patterns
can be interpreted as signs of hemispheric desynchronization,



premature brain aging and more brain stress when solving sim-
ple tasks compared to people who did not have COVID−19.
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