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Abstract—The stability problem of a moving circular cylinder
of radius R and a system of n identical point vortices uniformly
distributed on a circle of radius Ry is considered. The circulation
around the cylinder is zero. There are three parameters in the
problem: the number of point vortices n, the added mass of the
cylinder ¢ and parameter ¢ = R> / RZ.

The linearization matrix and the quadratic part of the Hamil-
tonian of the problem are studied. As a result, the parameter
space of the problem is divided into the area of linear stability,
where nonlinear analysis is required, and the instability area. In
the case n = 2,3 two domains of linear stability are found. In
the case n = 4,5, 6 there is found one domain. In the case n > 7,
the studied solution is unstable for all of problem parameters
values. The obtained results in the limiting case at a« — oo agree
with the known results for the model of point vortices outside
the circular domain.

Index Terms—Point vortices, Hamiltonian equation, Thomson
polygon, Stability

I. INTRODUCTION

Thomson vortex polygon is a configuration of identical point
vortices located at the vertices of a regular polygon. This
vortex configuration owes its name to two famous scientists.
W. Thomson (Lord Kelvin) posed the stability problem of such
a polygon on the plane in connection with his vortex theory
of the atom [1]. Its study in a linear formulation was began
by J. J. Thomson [2] and completed by T. H. Havelock [3].
The history of solving this problem in linear and nonlinear
formulation is described in detail in [4], [5].

The numerous studies have been devoted to the dynamics
of point vortices outside a circular domain (see review [6]).
The stability problem of stationary rotation of Thomson vortex
polygon outside unmoving circular cylinder with the zero
circulation around the cylinder had been solved by Havelock
in [3]. The nonlinear analysis of this problem required the
involvement of the resonances theory of equilibria of Hamilto-
nian systems (see review [7]). It turned out that two resonances
lead to instability, although stability takes place in the linear
formulation. The effect of circulation in the problem under
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consideration in the case of a vortices outside a circle was
studied in [8].

Various forms of the motion equations for a moving rigid
circular cylinder interacting with an n point vortices were
obtained in [9]-[13]. The history of the derivation of these
equations is given in the introduction of [13].

In this paper, the stability of a system consisting of a
Thomson n-gon and a moving cylinder is studied for arbitrary
n with zero circulation around cylinder. A linear stability
analysis is carried out for an arbitrary number of point vortices
n > 2. In the case n < 6, linear stability conditions are found
under which nonlinear analysis is required to solve the stability
problem. It is prooved that in the case of n > 7, the considered
system is unstable for all values of the problem parameters.
Here we also correct the erroneous results of the paper [14]
for the case n = 2.

II. FORMULATION OF PROBLEM

The motion of a circular cylinder interacting with n identical
point vortices is considered. As a result of the reduction of the
complete equations of motion, system of equations are written
in the complex form in [12]
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Here complex variables z, = x. + iy., 2 = T + iyx define
the position of the cylinder and point vortices, v = v; +tvs i8S
2

cylinder velocity, z; = — is the reflection of the kth vortex
V4

from the boundary of the circle, R is cylinder radius, the
constant coefficient a involves the added mass of the cylinder,
and the constants v and v, are connected with the circulation



around the cylinder I' and the intensity of identical point
: r r

vortices FQ by the formulae V= g.and Yo = 2.
Further in the paper we will consider the case

Y = "Yo- 2

Note that in [15] a complete bifurcation analysis of the motion
of the circular cylinder and two point vortices with arbitrary
circulation was carried out in the case not considered here
when circulation v and the total impulse of the system are
equal to zero. In [13] this works has been made for case of
two point vortices with opposite intensity.

The system (1), (2) can be written in the form
nyoe = —2iHz,, Y0z, = —2iH.,. 3)

The Hamiltonian H = H(z,Z), z = (z, 21, - - -
by formula
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The system (3) has the solution

Wy,

2.=0, zp=e“"luy, up= Roei%ﬂ(kfl) (®)]

corresponding of the stationary rotation of the n point vortices
around the cylinder with constant angular velocity w,,:
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The point vortices are located uniformly on a circle of radius
Ry, Rg > R. Then 0 < g < 1.
Without loss of generality, we will further assume that

Wp =

Yo =1, Ro=1 (7
The change of variables
Re = (QC + ipc)eiw"ta
(ot ) g ®)
2z = V14 2rpe’@n n Koo k=1,...,n,
reduces the system (3), (4) to the perturbation
equations with the Hamiltonian FE=FE(p), p =
(qCaTh e >rnap67017 ey e’n)

E(p) = H(z(p),z(p))+
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The stationary solution (5) corresponds to a continuous family
of equilibria
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The stability of the continuous family of equilibria (10) is
equivalent to the orbital stability of the stationary solution (5).
Let

Es(p) = (Sup; p) (1)

be the quadratic terms of the expansion of the Hamiltonian

E(p) into Taylor series in power of p in a neighborhood of

the zero equilibrium position. Here (-, -) is the scalar product.
The symmetric matrix S,, has the form

nain nbinhy 0 —nbapnhy, 1
S — nblnhl Fln nblnhnfl GOn
" 0 nblnhnfl nain annhl
—nbayh,_1 =Gy nbayhy F,,

The vectors h; and h,,_; are given by formulas

2
h; =4/ =(1,cosv,...,cos(n —1)v),
n

5 (12)
h, 1 =1/=(0,siny,...,sin(n — 1)v),
n
Here v = 27”, coefficients aj,, b1, and bs, are given by
formulas
no wy V2n(l+q) V2n(l —q)
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Symmetric matrices F1,,, Fa,, and skew-symmetric matrix
Gy, are circulant matrices:
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where 1I,, is unit matrix of size n X n.
The coefficient f,,; and go; can be written as:

Fmol0:0) = 5. £90(0) + Fholaa),
Fns(@0) = 59, 0) + oy 0,0,

1 ,

Here the coefficients fglj and ggj match the corresponding
coefficients written out in the papers [3], [8].

The coefficients f); and gg;, j = 0,...,n — 1 are given
by equalities

1 2
fllj(a’vq) = (2—’_7&(])008”!77 .7: 0,...,n—1
1— 2
fhtag) = oD cos (14
1 _ q2 - . .
9o;(a,q) = sin V7.

The values A, and ¢)\gy are eigenvalues of matrices F,,,,,
and Gy, given in the form

1
Amk(,0) = 5 A0(@) + Anure(a, @), (15)



where A, A9, and A, are the same as in the papers [3], [8]
and \{,, A3, and A}, are defined as

n(1+ q)?
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n(g> — 1)
M= A = M),

Mr=XMp=Ar=0, kE#1,n—1.

The symmetric matrix S,, has zero eigenvalue, correspond-
ing to family of equilibrium (10). The family C is Lyapunov
stable in the exact nonlinear setting if the Hamiltonian E(p)
has an extremum on it. To do this, it is necessary that all the
eigenvalues of the matrix S,, except for a simple zero have
the same sign. As shown later in the Proposition 2, this does
not hold.

The linearization matrix L,, of the system with Hamiltonian
(9) about the zero solution has the form

L, = 2K~ 'JS,, J= (IO I"“) , a7)

n+1 0
where K~! is diagonal matrix of size (2n + 2) x (2n + 2):
K ! =diag(1/n,—1,...,—1,1/n,—1,...,—1,).

Then matrix L,, can write as

0 binhy, 1 A1n binhy

L. =2 annhn—l GOn 777,()1711'11 *F2n
" —a1n —b1nhy 0 banhy, 1
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Instability of solution (5) occurs when the linearization
matrix L,, has eigenvalues with positive real part.

In the case n = 2 the characteristic polynomial of the
linearization matrix Ls is given by equality

det(016 — LQ) = 0'2\:[/12(02), (18)

where W15(0?) is biquadratic polynomial
Uis(0?) = o* 4 8p110% + 16po1, (19)
P11 = aiy — 8bibs + A11 Ao, (20)
Po1 = a3\ 11 ha1 — 4b3y a1 — 4b3oAiq + 16b2,03,.  (21)

If n > 3, the eigenvalues of the linearization matrix L,, are
root of the following polynomial:

det(olapi2 — Ly) = o | | ¥jn(0?). (22)

Here Wy, (0?) is bicubic polynomial

U1,(0°) = 0% + dparo* + 16p110? + 64po:

P21 = 2 1121 + 203 — dnbinba, + ad,

P11 = 4020303, — 4nA3,b1,bon — 4ndor Ao b3,
— 4AnXg1 A 1103, + 4nXo1a1nb1nban — 4nXo1 A11b1nbay
— 2nX91a10b7,, — 2nA11a1nb3, + A5 — 2A5: A21 A1
+ 273103, + A5 AT + 22X 14,

po1 = (2nb1ybay Aot + nb?, Aot + nAi1bs, +ain\d;
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the polinomial ¥, (c?), j = 2,...,[%52] for n > 3 are
biquadratic polynomials

‘I]jn(UQ) =o'+ 8p1j02 + 16po;
2
p1j = Mg ey + A, poj = (Aidey — AG;)

In the case of even n > 4 the polynomial W= ,, (o) has the
form

(24)

Vs o(0%) =0 + 4hi1 Ao, (25)

In the case n > 4, the polynomial (24), (25) do not
depend on parameter a, and their roots coincide with the
corresponding eigenvalues of the linearization matrix in the
case of a unmoving cylinder [3]. In [3] it has been shown that
among them for n > 7 there is at least one eigenvalue with
positive real part. Hence, and from the analysis of polynomials
W, in the case of 2 < n < 6, the following statements follow.

Proposition 1.

1) If n > 7 the solution (5), (6) is unstable for any values

of problem parameters: 0 < q < 1, a > 0.

2) If n = 2 all eigenvalues of the linearization matrix Lo

lie in the imaginary axes, if coefficients of biquadratic

polynomial W15(0?) satisfy to conditions:
po1(g;a) =0, pui(g.a) >0, 26)
Dis(g, a) = pi; — 4po1 = 0.

3) If 3 < n <6, all eigenvalues of the linearization matrix
L, lie in the imaginary axes, if all following conditions
are valid:

a) The cubic polynomial Vy,(s) is stable, that is,
satisfies the Vyshnegradsky conditions:

po1(q,a) =0, p11(q,a) =0, p2i1(g,a) =0,

A1n(q,a) = p11ip21 — po1 = 0. 27
and its discriminant D1, is not negative:
Din(g,a) = —4p3ipor + p31pi, — 4P+ 28)

+ 18po1p11p21 — 27p3; > 0.

b) The coefficients and discriminant of quadratic
polynomials W;,(s), j = 2,...,[5]| forn >3
are not negative:

Poj(q) =0, pi;(q)

(29)
D; (q) = p%j — 4po;

20,
>0



4) The linearization matrix Ly, n = 2,...,6 has at least
one eigenvalue in the right half-plane, if at least one of
the conditions 2) or 3) is violated.

Let’s analyze the eigenvalues of the matrix S,, in the case
2<n<6.
If n = 2, then its characteristic polynomial has the form
det(A16 — SQ) = A(A — )\12)@21(A)@22(A),
where ®y,,,(A) are quadratic polynomials
Dy, = A? + kimA + kom = 0,
Fim = —2a12 + Am1,  kom = 8bj,5 — 2a12Am1.

In the case n = 3, 5 the characteristic polynomials of the
matrix S,, are

det(Alg — S3) = A(A — \i3)®32, (M),
det(ALjz — S5) = A(A — A\i5) 02, (A)D2,(A). 0
In the case n = 4, 6, we have
det(AIg — Sy) = A(A — Aig) @2 (A)Dyo(A), 31)

det(AIl4 — SG) = A(A — )\16)q)%1 (A)(I)%Q(A)¢63(A)

The polynomials ®,;(A) in (30), (31) are cubic polynomials
given by formula

1 (A) = A% + ko1 A? + k11 A + ko,
ko1(q,a) = —nay, — Ao1 — A1,
k11(g,a) = — (b%n + bgn) n? + ain (Mo1 + A1)
+ Ao1 A1 — /\31, 2
ko1(q,a) = (2 Ao1b1y ban + A11b3, + A21b7,)
—ain (A21Ai1 — Ay) n
The polynomial ®45(A) and ®g3(A) are written as
Ppn(A)=(A—A2)(A— A2 ).
The polynomials ®52(A) and Pgo(A) are quadratic polinomial:
®po(A) = A% + E12A + koo,

ki2(q) = Gy

The calculations show that in the case 3 < n < 6 the roots
of cubic polynomials ®,,1 (A) have different signs. Similar case
takes place for polynomial ®5; P2 at n = 2.

Proposition 2. The matrix S,, 2 < n < 6, has eigenvalues
with different sings for all values of the problem parameter
and quadratic form (11) is sign-variable one. Thus nonlinear
stability analysis is required in linear stability domains (white
domain in the Figs 1-3).

—A12 — Agg, ko2(q) = A12d2a — A5,

III. FORMULATION OF RESULTS

In the case n > 7 the solution (5), (6) is unstable for all of
values of problem parameter (Proposition 1).
We introduce the parameter o:

1—a
14+a

a= (34)

In the case 2 < n < 6, analysis of the eigenvalues of the
matrices L,, and S,, show that the space of parameters (g, «),
where 0 < ¢ < 1, and —1 < o < 1, is divided into two types
of areas shown in the Figs. 1-3:

1) White area is linear stability area, where the eigenvalues
of linearization matrix L,, are all purely imaginary, and
the eigenvalues of the matrix S,, have the different signs.
In this case, a nonlinear analysis is required to conclude
stability.

2) Shaded area is instability area. The linearization matrix
L,, has eigenvalues with positive real part. The solution
(5), (6) is instable in the exact nonlinear setting.

The Figs. 1, 2 present the cases n = 2,3 respectively, and
the Fig. 3 shows the cases n = 4,5, 6.

For n = 2,3 two areas of linear stability are found. In the
Fig. 1 the curves a5 are given by equation D2 = 0, where
D5 is discriminant of biquadratic polynomial (19). The curves
oo are defined by equality pp; = 0, where pg; is given by
(21). In the Fig. 2 the boundary of linear stability domains are
given by equality D;3 = 0, where D;3 is given by formula
(28).

In the cases n = 4,5,6 one linear stability area is shown
in Fig. 3. Its boundary consists of the curve «q,, given by
the equation Dy,, = 0 and straight line ¢ = ¢.,. Here Dy,
is given by equality (28). The constants g.,, was calculate by
Havelock in [3]:

sz ~ 0.148536,
a5 ~ 0.334596,

3 ~ 0.273695,
e ~ 0.295985.

Gea ~ 0.308125,
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Fig. 1. The diagram of stability of stationary rotation of the
Thomson vortex n-gon around cylinder (the solution (5)) in
the case n = 2
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Fig. 2. The diagram of stability of the solution (5) in the case
n=3

[1]
[2]

[3]
[4]
[5]

[6]

[71

[8]

[91

[10]

[11]

REFERENCES

W. Thomson, “Floating magnets (illustrating vortex systems)”, Nature,
London, vol. 18, pp. 13-14, 1878.

J.J. Thomson, A Treatise on the Motion of Vortex Rings: An essay
to which the Adams Prize was adjudged in 1882, in the University of
Cambridge. London: Macmillan, pp. 94-108, 1883.

T. H. Havelock, “The stability of motion of rectilinear vortices in ring
formation”, Phil. Mag., vol. 11, no 70, pp. 617-633, 1931.

L. G. Kurakin and V. I. Yudovich, The stability of stationary rotation of
a regular vortex polygon, Chaos, vol. 12, pp. 574-595, 2002.

A. V. Borisov and I. S. Mamaev, “The Kelvin problem and its solu-
tions”, in Mathematical Methods in the Dynamics of Vortex Structures.
Moscow-Izhevsk, Institute of Computer Sciences, pp. 261-265, 2005.
A. A. Kilin, A. V. Borisov, and I. S. Mamaev, “The Dynamics of
Point Vortices Inside and Outside a Circular Domain”, Fundamental and
Applied Problems in the Theory of Vortices, pp. 414440, 2003.

L. G. Kurakin, A. P. Melekhov, and I. V. Ostrovskaya, “A Survey of
the Stability Criteria of Thomson’s Vortex Polygons outside a Circular
Domain”, Bol. Soc. Mat. Mexicana, vol. 22. N 2. P. 733-744, 2016.

L. Kurakin and I. Ostrovskaya “On the Effects of Circulation around a
Circle on the Stability of a Thomson Vortex N-gon”, Mathematics, vol.
8. p. 1033, 2020.

S. M. Ramodanov, “Motion of a circular cylinder and N point vortices
in a perfect fluid,” Regular Chaotic Dyn., vol. 7, pp. 291, 2002.

B. N. Shashikanth, J. E. Marsden, J. W. Burdick, and S. D. Kelly,
“The Hamiltonian structure of a two-dimensional rigid circular cylinder
interacting dynamically with N point vortices,” Phys. Fluids, vol. 14,
pp. 1214, 2002.

A. V. Borisov, I. S. Mamaev, and S. M. Ramodanov, “Motion of a
circular cylinder and N point vortices in a perfect fluid,” Regular Chaotic
Dyn. vol. 8, pp. 449, 2003.

a)

b)

c)

-09
-092
-0.94
o
-096
~0981 a,,
Uy
-To 01 02 03 04 05
q
-09
-092
-0.94
o
-096
-098
s s
| L—
) 01 02 03 04 05
q
-09
-092
~0.94
-0.96
-098
a,
| | 19—,
-To 01 02 03 04 05

q

Fig. 3. The diagram of stability of the solution (5) in the case
ayn=4,b)n=5,¢c)n==06

[12]

[13]

[14]

[15]

A. V. Borisov, I. S. Mamaev, S. M. Ramodanov, “Dynamics of a
cylinder interacting with point vortices”, in Mathematical Methods in the
Dynamics of Vortex Structures. Moscow—Izhevsk, Institute of Computer
Sciences, pp. 286-307, 2005.

I. S. Mamaev, 1. A. Bizyaev, “Dynamics of an unbalanced circular foil
and point vortices in an ideal fluid”, Phys. Fluids, vol. 33, 087119, 2021.
A. V. Borisov and L. G. Kurakin, “On the Stability of a System of Two
Identical Point Vortices and a Cylinder”, Proc. Steklov Inst. Math., vol.
310, pp. 25-31, 2020.

S. M. Ramodanov and S. V. Sokolov, “Dynamics of a Circular Cylinder
and Two Point Vortices in a Perfect Fluid”, Regular Chaotic Dyn., vol.
26, no. 6, pp. 675-691, 2021.



