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Abstract—The stability problem of a moving circular cylinder
of radius R and a system of n identical point vortices uniformly
distributed on a circle of radius R0 is considered. The circulation
around the cylinder is zero. There are three parameters in the
problem: the number of point vortices n, the added mass of the
cylinder a and parameter q = R2/R2

0.
The linearization matrix and the quadratic part of the Hamil-

tonian of the problem are studied. As a result, the parameter
space of the problem is divided into the area of linear stability,
where nonlinear analysis is required, and the instability area. In
the case n = 2, 3 two domains of linear stability are found. In
the case n = 4, 5, 6 there is found one domain. In the case n > 7,
the studied solution is unstable for all of problem parameters
values. The obtained results in the limiting case at a → ∞ agree
with the known results for the model of point vortices outside
the circular domain.

Index Terms—Point vortices, Hamiltonian equation, Thomson
polygon, Stability

I. INTRODUCTION

Thomson vortex polygon is a configuration of identical point
vortices located at the vertices of a regular polygon. This
vortex configuration owes its name to two famous scientists.
W. Thomson (Lord Kelvin) posed the stability problem of such
a polygon on the plane in connection with his vortex theory
of the atom [1]. Its study in a linear formulation was began
by J. J. Thomson [2] and completed by T. H. Havelock [3].
The history of solving this problem in linear and nonlinear
formulation is described in detail in [4], [5].

The numerous studies have been devoted to the dynamics
of point vortices outside a circular domain (see review [6]).
The stability problem of stationary rotation of Thomson vortex
polygon outside unmoving circular cylinder with the zero
circulation around the cylinder had been solved by Havelock
in [3]. The nonlinear analysis of this problem required the
involvement of the resonances theory of equilibria of Hamilto-
nian systems (see review [7]). It turned out that two resonances
lead to instability, although stability takes place in the linear
formulation. The effect of circulation in the problem under
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consideration in the case of a vortices outside a circle was
studied in [8].

Various forms of the motion equations for a moving rigid
circular cylinder interacting with an n point vortices were
obtained in [9]–[13]. The history of the derivation of these
equations is given in the introduction of [13].

In this paper, the stability of a system consisting of a
Thomson n-gon and a moving cylinder is studied for arbitrary
n with zero circulation around cylinder. A linear stability
analysis is carried out for an arbitrary number of point vortices
n > 2. In the case n 6 6, linear stability conditions are found
under which nonlinear analysis is required to solve the stability
problem. It is prooved that in the case of n > 7, the considered
system is unstable for all values of the problem parameters.
Here we also correct the erroneous results of the paper [14]
for the case n = 2.

II. FORMULATION OF PROBLEM

The motion of a circular cylinder interacting with n identical
point vortices is considered. As a result of the reduction of the
complete equations of motion, system of equations are written
in the complex form in [12]

ażc = av = −iγzc + iγ0

n∑
j=1

(z̃j − zj),

żk = −v +
R2v

z2
k

+
iγ

zk
− iγ0

zk − z̃k
+

+ iγ0

n∑
j=1
j 6=k

(
1

zk − zj
− 1

zk − z̃j

)
, k = 1, . . . , n.

(1)

Here complex variables zc = xc + iyc, zk = xk + iyk define
the position of the cylinder and point vortices, v = v1 + iv2 is

cylinder velocity, z̃k =
R2

zk
is the reflection of the kth vortex

from the boundary of the circle, R is cylinder radius, the
constant coefficient a involves the added mass of the cylinder,
and the constants γ and γ0 are connected with the circulation



around the cylinder Γ and the intensity of identical point
vortices Γ0 by the formulae γ = Γ

2π and γ0 = Γ0

2π .
Further in the paper we will consider the case

γ = nγ0. (2)

Note that in [15] a complete bifurcation analysis of the motion
of the circular cylinder and two point vortices with arbitrary
circulation was carried out in the case not considered here
when circulation γ and the total impulse of the system are
equal to zero. In [13] this works has been made for case of
two point vortices with opposite intensity.

The system (1), (2) can be written in the form

nγ0żc = −2iHzc , γ0żk = −2iHzk . (3)

The Hamiltonian H = H(z, z), z = (zc, z1, . . . , zn) is given
by formula

H =
1

2
a|v|2 +

γ2
0

2

n∑
k=1

(
ln
(
|zk|2 −R2

)
− n ln |zk|2

)
+

+
γ2

0

2

∑
1≤k<j≤n

(
ln
∣∣R2 − zjzk

∣∣2 − ln |zj − zk|2
)
.

(4)

The system (3) has the solution

zc = 0, zk = eiωntuk, uk = R0e
i 2πn (k−1) (5)

corresponding of the stationary rotation of the n point vortices
around the cylinder with constant angular velocity ωn:

ωn = − γ0

2R2
0

(
3n− 1− 2n

1− qn

)
, q =

R2

R2
0

. (6)

The point vortices are located uniformly on a circle of radius
R0, R0 > R. Then 0 < q < 1.

Without loss of generality, we will further assume that

γ0 = 1, R0 = 1. (7)

The change of variables

zc = (qc + ipc)e
iωnt,

zk =
√

1 + 2rke
i(ωnt+

2π(k−1)
n +θk), k = 1, . . . , n,

(8)

reduces the system (3), (4) to the perturbation
equations with the Hamiltonian E=E(ρ), ρ =
(qc, r1, . . . , rn, pc, θ1, . . . , θn):

E(ρ) = H(z(ρ), z(ρ))+

+
ωn
2

(
nq2
c + np2

c − n− 2

n∑
k=1

rk

)
.

(9)

The stationary solution (5) corresponds to a continuous family
of equilibria

C = {qc = pc = r1 = . . . = rn = 0, θ1 = . . . = θn}. (10)

The stability of the continuous family of equilibria (10) is
equivalent to the orbital stability of the stationary solution (5).

Let
E2(ρ) = 〈Snρ,ρ〉 (11)

be the quadratic terms of the expansion of the Hamiltonian
E(ρ) into Taylor series in power of ρ in a neighborhood of
the zero equilibrium position. Here 〈·, ·〉 is the scalar product.

The symmetric matrix Sn has the form

Sn =


na1n nb1nh1 0 −nb2nhn−1

nb1nh1 F1n nb1nhn−1 G0n

0 nb1nhn−1 na1n nb2nh1

−nb2nhn−1 −G0n nb2nh1 F2n


The vectors h1 and hn−1 are given by formulas

h1 =

√
2

n
(1, cos ν, . . . , cos(n− 1)ν),

hn−1 =

√
2

n
(0, sin ν, . . . , sin(n− 1)ν),

(12)

Here ν = 2π
n , coefficients a1n, b1n and b2n are given by

formulas

a1n =
n

2a
+
ωn
2
, b1n =

√
2n(1 + q)

4a
, b2n =

√
2n(1− q)

4a
.

Symmetric matrices F1n, F2n and skew-symmetric matrix
G0n are circulant matrices:

Fmn
def
= fm0In +

n−1∑
j=1

fmjC
j , G0

def
=

n−1∑
j=1

g0jC
j ,

C =


0 1 0 0 . . . 0
0 0 1 0 . . . 0
. . . . . . . . . . . . . . . . . .
0 0 0 0 . . . 1
1 0 0 0 . . . 0

 ,

where In is unit matrix of size n× n.
The coefficient fmj and g0j can be written as:

fm0(q, a) =
1

2
f0
m0(q) + f1

m0(a, q),

fmj(q, a) =
1

2
f0
mj(q) + f1

mj(a, q), (13)

g0j(q, a) =
1

2
g0

0j(q) + g1
0j(a, q), j = 1, . . . , n− 1.

Here the coefficients f0
mj and g0

0j match the corresponding
coefficients written out in the papers [3], [8].

The coefficients f1
mj and g1

0j , j = 0, . . . , n − 1 are given
by equalities

f1
1j(a, q) =

(1 + q)2

2a
cos νj, j = 0, . . . , n− 1

f1
2j(a, q) =

(1− q)2

2a
cos νj,

g1
0j(a, q) =

q2 − 1

2a
sin νj.

(14)

The values λmk and iλ0k are eigenvalues of matrices Fmn
and G0n given in the form

λmk(q, a) =
1

2
λ0
mk(q) + λ1

mk(q, a), (15)



where λ0
1k, λ0

2k and λ0
0k are the same as in the papers [3], [8]

and λ1
1k, λ1

2k and λ1
0k are defined as

λ1
11 = λ1

1,n−1 =
n(1 + q)2

4a
,

λ1
21 = λ1

2,n−1 =
n(1− q)2

4a
,

λ1
01 = −λ1

0,n−1 =
n(q2 − 1)

4a
,

λ1
1k = λ1

2k = λ1
0k = 0, k 6= 1, n− 1.

(16)

The symmetric matrix Sn has zero eigenvalue, correspond-
ing to family of equilibrium (10). The family C is Lyapunov
stable in the exact nonlinear setting if the Hamiltonian E(ρ)
has an extremum on it. To do this, it is necessary that all the
eigenvalues of the matrix Sn except for a simple zero have
the same sign. As shown later in the Proposition 2, this does
not hold.

The linearization matrix Ln of the system with Hamiltonian
(9) about the zero solution has the form

Ln = 2K−1JSn, J =

(
0 In+1

−In+1 0

)
, (17)

where K−1 is diagonal matrix of size (2n+ 2)× (2n+ 2):

K−1 = diag (1/n,−1, . . . ,−1, 1/n,−1, . . . ,−1, ) .

Then matrix Ln can write as

Ln = 2


0 b1nhn−1 a1n b1nh1

nb2nhn−1 G0n −nb1nh1 −F2n

−a1n −b1nh1 0 b2nhn−1

nb1nh1 F1n nb1nhn−1 G0n

 .

Instability of solution (5) occurs when the linearization
matrix Ln has eigenvalues with positive real part.

In the case n = 2 the characteristic polynomial of the
linearization matrix L2 is given by equality

det(σI6 − L2) = σ2Ψ12(σ2), (18)

where Ψ12(σ2) is biquadratic polynomial

Ψ12(σ2) = σ4 + 8p11σ
2 + 16p01, (19)

p11 = a2
12 − 8b1b2 + λ11λ21, (20)

p01 = a2
12λ11λ21 − 4b212λ21 − 4b222λ11 + 16b212b

2
22. (21)

If n > 3, the eigenvalues of the linearization matrix Ln are
root of the following polynomial:

det(σI2n+2 − Ln) = σ2

bn2 c∏
j=1

Ψjn(σ2). (22)

Here Ψ1n(σ2) is bicubic polynomial

Ψ1n(σ2) = σ6 + 4p21σ
4 + 16p11σ

2 + 64p01 (23)

p21 = 2λ11λ21 + 2λ2
01 − 4nb1nb2n + a2

1n

p11 = 4n2b21nb
2
2n − 4nλ2

01b1nb2n − 4nλ01λ21b
2
1n

− 4nλ01λ11b
2
2n + 4nλ01a1nb1nb2n − 4nλ21λ11b1nb2n

− 2nλ21a1nb
2
1n − 2nλ11a1nb

2
2n + λ4

01 − 2λ2
01λ21λ11

+ 2λ2
01a

2
1n + λ2

21λ
2
11 + 2λ21λ11a

2
1n

p01 =
(
2n b1nb2n λ01 + nb21nλ21 + nλ11b

2
2n + a1nλ

2
01

−λ11λ21a1n)
2
,

the polinomial Ψjn(σ2), j = 2, . . . , bn−1
2 c for n > 3 are

biquadratic polynomials

Ψjn(σ2) = σ4 + 8p1jσ
2 + 16p0j (24)

p1j = λ1j λ2j + λ2
0j , p0j =

(
λ1jλ2j − λ2

0j

)2
.

In the case of even n > 4 the polynomial Ψn
2 ,n

(σ2) has the
form

Ψn
2 ,n

(σ2) = σ2 + 4λ11λ12. (25)

In the case n > 4, the polynomial (24), (25) do not
depend on parameter a, and their roots coincide with the
corresponding eigenvalues of the linearization matrix in the
case of a unmoving cylinder [3]. In [3] it has been shown that
among them for n > 7 there is at least one eigenvalue with
positive real part. Hence, and from the analysis of polynomials
Ψjn in the case of 2 6 n 6 6, the following statements follow.

Proposition 1.
1) If n > 7 the solution (5), (6) is unstable for any values

of problem parameters: 0 < q < 1, a > 0.
2) If n = 2 all eigenvalues of the linearization matrix L2

lie in the imaginary axes, if coefficients of biquadratic
polynomial Ψ12(σ2) satisfy to conditions:

p01(q, a) > 0, p11(q, a) > 0,

D12(q, a) = p2
11 − 4p01 > 0.

(26)

3) If 3 6 n 6 6, all eigenvalues of the linearization matrix
Ln lie in the imaginary axes, if all following conditions
are valid:

a) The cubic polynomial Ψ1n(s) is stable, that is,
satisfies the Vyshnegradsky conditions:

p01(q, a) > 0, p11(q, a) > 0, p21(q, a) > 0,

∆1n(q, a) = p11p21 − p01 > 0. (27)

and its discriminant D1n is not negative:

D1n(q, a) = −4p3
21p01 + p2

21p
2
11 − 4p3

11+

+ 18p01p11p21 − 27p2
01 ≥ 0.

(28)

b) The coefficients and discriminant of quadratic
polynomials Ψjn(s), j = 2, . . . , bn2 c for n > 3
are not negative:

p0j(q) > 0, p1j(q) > 0,

Djn(q) = p2
1j − 4p0j > 0.

(29)



4) The linearization matrix Ln, n = 2, . . . , 6 has at least
one eigenvalue in the right half-plane, if at least one of
the conditions 2) or 3) is violated.

Let’s analyze the eigenvalues of the matrix Sn in the case
2 6 n 6 6.

If n = 2, then its characteristic polynomial has the form

det(ΛI6 − S2) = Λ(Λ− λ12)Φ21(Λ)Φ22(Λ),

where Φ2m(Λ) are quadratic polynomials

Φ2m = Λ2 + k1mΛ + k0m = 0,

k1m = −2a12 + λm1, k0m = 8b2m2 − 2a12λm1.

In the case n = 3, 5 the characteristic polynomials of the
matrix Sn are

det(ΛI8 − S3) = Λ(Λ− λ13)Φ2
31(Λ),

det(ΛI12 − S5) = Λ(Λ− λ15)Φ2
51(Λ)Φ2

52(Λ).
(30)

In the case n = 4, 6, we have

det(ΛI10 − S4) = Λ(Λ− λ14)Φ2
41(Λ)Φ42(Λ),

det(ΛI14 − S6) = Λ(Λ− λ16)Φ2
61(Λ)Φ2

62(Λ)Φ63(Λ).
(31)

The polynomials Φn1(Λ) in (30), (31) are cubic polynomials
given by formula

Φn1(Λ) = Λ3 + k21Λ2 + k11Λ + k01,

k21(q, a) = −na1n − λ21 − λ11,

k11(q, a) = −
(
b21n + b22n

)
n2 + a1n (λ21 + λ11)n

+ λ21λ11 − λ2
01,

k01(q, a) =
(
2λ01b1n b2n + λ11b

2
2n + λ21b

2
1n

)
n2

− a1n

(
λ21λ11 − λ2

01

)
n.

(32)

The polynomial Φ42(Λ) and Φ63(Λ) are written as

Φn,n2 (Λ) = (Λ− λ1,n2
)(Λ− λ2,n2

).

The polynomials Φ52(Λ) and Φ62(Λ) are quadratic polinomial:

Φn2(Λ) = Λ2 + k12Λ + k02,

k12(q) = −λ12 − λ22, k02(q) = λ12λ22 − λ2
02.

(33)

The calculations show that in the case 3 6 n 6 6 the roots
of cubic polynomials Φn1(Λ) have different signs. Similar case
takes place for polynomial Φ21Φ22 at n = 2.

Proposition 2. The matrix Sn, 2 6 n 6 6, has eigenvalues
with different sings for all values of the problem parameter
and quadratic form (11) is sign-variable one. Thus nonlinear
stability analysis is required in linear stability domains (white
domain in the Figs 1–3).

III. FORMULATION OF RESULTS

In the case n > 7 the solution (5), (6) is unstable for all of
values of problem parameter (Proposition 1).

We introduce the parameter α:

α =
1− a
1 + a

. (34)

In the case 2 6 n 6 6, analysis of the eigenvalues of the
matrices Ln and Sn show that the space of parameters (q, α),
where 0 < q < 1, and −1 < α < 1, is divided into two types
of areas shown in the Figs. 1–3:

1) White area is linear stability area, where the eigenvalues
of linearization matrix Ln are all purely imaginary, and
the eigenvalues of the matrix Sn have the different signs.
In this case, a nonlinear analysis is required to conclude
stability.

2) Shaded area is instability area. The linearization matrix
Ln has eigenvalues with positive real part. The solution
(5), (6) is instable in the exact nonlinear setting.

The Figs. 1, 2 present the cases n = 2, 3 respectively, and
the Fig. 3 shows the cases n = 4, 5, 6.

For n = 2, 3 two areas of linear stability are found. In the
Fig. 1 the curves α12 are given by equation D12 = 0, where
D12 is discriminant of biquadratic polynomial (19). The curves
α22 are defined by equality p01 = 0, where p01 is given by
(21). In the Fig. 2 the boundary of linear stability domains are
given by equality D13 = 0, where D13 is given by formula
(28).

In the cases n = 4, 5, 6 one linear stability area is shown
in Fig. 3. Its boundary consists of the curve α1n, given by
the equation D1n = 0 and straight line q = q∗n. Here D1n

is given by equality (28). The constants q∗n was calculate by
Havelock in [3]:

q∗2 ≈ 0.148536, q∗3 ≈ 0.273695, q∗4 ≈ 0.308125,

q∗5 ≈ 0.334596, q∗6 ≈ 0.295985.

Fig. 1. The diagram of stability of stationary rotation of the
Thomson vortex n-gon around cylinder (the solution (5)) in
the case n = 2



Fig. 2. The diagram of stability of the solution (5) in the case
n = 3
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