
XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE 

The study of the biological aging mechanisms of the 

human neuromuscular system based on statistical 

analysis of physiological signals 

 
Valentin Yunusov 

Institute of Computational Mathematics 

and Information Technologies 

Institute of Physics 
Kazan Federal University 

Kazan, Russia 
valentin.yunusov@gmail.com  

Alexander Minkin 

Yelabuga Institute 
Kazan Federal University 

Kazan, Russia 
avminkin@yandex.ru 

 

Sergey Demin 
Institute of Physics 

Kazan Federal University 
Kazan, Russia 

serge_demin@mail.ru  

 

 

Alexander Elenev 
Institute of Physics 

Kazan Federal University 
Kazan, Russia 

a.elenev6345@gmail.com 

 

Abstract—In present work, we conduct a statistical analysis 

of age-related changes in the neuromuscular system of healthy 

subjects. The experiment involved 29 volunteers who were 

assigned to different age groups: 20–24 years old, 64–69 years 

old and 75–90 years old. Within the framework of the Memory 

Functions Formalism, a quantitative assessment of the 

statistical memory effects and relaxation times for the 

dynamometric signals of the subjects recorded at different 

force impulses was performed. We have found that the 

dynamics of force signals of volunteers of the second and third 

groups is characterized by shorter lifetimes of statistical 

memory, as well as a transition from periodic to more 

probabilistic behavior. The calculated relaxation times for the 

subjects from older age groups were 2–3 times higher than 

those for young volunteers. An analysis of the spectral 

behavior of the temporal correlation function and memory 

functions allows establishing additional age-related changes in 

human hand-eye coordination. The presented results will be of 

interest to specialists in the field of biophysics, physics of 

complex systems, as well as neurosciences and gerontology. 
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I. INTRODUCTION 

At present, the attention of scientists from various fields 
of human knowledge has been drawn to the study of the 
evolution and properties of complex systems. A true triumph 
for the «complexity sciences» was the awarding of the Nobel 
Prize in Physics in 2021 to three scientists: “...for 
fundamental contributions to the human understanding of 
complex physical systems”. Climatologists Syukuro Manabe 
and Klaus Hasselmann managed to perform a mathematical 
description of the relationship between constantly changing 
weather conditions and the relatively stable climate of the 
Earth [1, 2]. The theoretical physicist Giorgio Parisi, using 
the example of the physical properties of spin glasses, 
demonstrated the key role of chaos and fluctuations in the 
evolution of complex systems from atomic to planetary 

scales [3]. The development of computer technology and 
recording equipment contributes to the accelerated 
development of methods for analyzing signals generated by 
complex systems. Initially, the extraction of information 
from time signals of experimental parameters was conducted 
based on statistical physics methods, probability theory and 
mathematical statistics, while now machine learning methods 
are actively used in this area: classical methods, genetic 
algorithms or reinforcement learning, ensemble methods, 
neural networks and deep machine learning [4, 5].  

In this paper, we study the physical mechanisms of 
human biological aging using the analysis of physiological 
signals based on the human neuromuscular system. Most 
often, this phenomenon is described as an inevitable 
biological process of gradual degradation of individual 
organs, tissues, and the organism as a whole. Scientists are 
constantly making attempts to find optimal mathematical 
models and methods for a quantitative description of the 
aging mechanism. Scientists are constantly making attempts 
to find optimal mathematical models and methods for a 
quantitative description of the mechanisms of aging. Thus, in 
his work [6], T. Penna proposes a numerical model that 
establishes the relationship between biological aging and the 
death of an individual. Other scientists [7, 8] based on the 
ideas of spatial and temporal invariance demonstrate changes 
in the dynamics of human physiological signals with age. A 
significant part of the work is devoted to the study of 
“physiological complexity” [9–11], the change in which can 
be established by considering the number of variables, the 
relationships between them, or stochastic and deterministic 
contributions that describe living systems. To study the 
mechanisms of biological aging, we propose to use the 
concepts of the effects of statistical memory and relaxation 
times, developed by the authors based on the Memory 
Functions Formalism [12, 13].  

II. THEORETICAL FRAMEWORK OF MEMORY FUNCTIONS 

FORMALISM 

The Memory Functions Formalism is a discrete 

generalization of the Zwanzig-Mori formalism [14, 15], 
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conducted by the authors of this work together with the 

scientific adviser, Professor R.M. Yulmetyev to study the 

stochastic dynamics of complex systems [16, 17].  

The proposed approach is based on the representation of 

the time dynamics of the process under study in the form of 
a multidimensional state vector that obeys the equation of 

motion written in a discrete form. The experimentally 

observed process is a separate link in the hierarchy of 

interrelated relaxation processes that are simultaneously 

realized in a complex system. According to the idea of an 

abbreviated description of relaxation processes, only 

individual relaxation processes, which are directly included 

in the theoretical description, play a key role in the 

evolution of complex systems. The use of the Zwanzig-Mori 

projection technique [14, 15] and the Gram-Schmidt 

orthogonalization procedure allows shortening of the 

description. Within the framework of the approach for the 
studied time series, a chain of finite-difference linked 

kinetic equations of the Zwanzig-Mori type is constructed 

for the time correlation function (TCF) and statistical 

memory functions for interrelated variables. In fact, we 

consider the description of aftereffects at different relaxation 

levels.  

As a result, we obtain a large set of characteristics and 

dependencies: time dependences of orthogonal dynamic 

variables, phase portraits of dynamic variables 

combinations, relaxation and kinetic parameters, statistical 

memory functions and their power spectra, frequency 

dependences of statistical memory measures calculated 

directly from sequences of dynamic variables of complex 

systems [18, 19].  

In particular, to describe the statistical memory effects, 
the parameter ε1=ε1(0) is introduced, which allows 

comparing the relaxation times of the TCF and the lifetimes 

of the statistical memory [12, 16, 17]. In the case of ε1»1 the 

process under study is characterized by short-term (weak) 

statistical memory. With a parameter value comparable to 

one, the process under study is characterized by a long-term 

(strong) statistical memory. In addition, cases with 

intermediate (moderate) statistical memory are considered. 

The values of the parameter ε1(0), estimated at zero 

frequency, make it possible to compare the relaxation and 

statistical memory times for the entire length of the 

dynamometric signal under study [20, 21].  
It should be noted that in this section we do not present 

mathematical relations for the entire array of quantitative 

parameters and qualitative characteristics introduced within 

the Memory Functions Formalism.  

III. EXPERIMENTAL METHODS 

The experimental data are the result of the synergistic 
activity of the human muscular and nervous systems – 
recording of dynamometric signals. A round Entran ELFS-
B3 dynamometric sensor with a diameter of ~1.3 cm was 

 

  

Fig. 1. Representative time dependences of the orthogonal dynamic variable W0 for subjects of different age groups. A dynamic variable is built from the 
original time signal and contains information about its fluctuations relative to the zero value. 

  



fixed on the table. The wrists, middle fingers, ring fingers 
and little fingers of the volunteers were also fixed on the 
table surface. The position of the elbows of the participants 
in the experiment remained constant during the entire time 
of signal recording. The analog signal was amplified and 
converted to digital format. The resulting output signal was 
reflected on the monitor screen.  

Fig. 1 shows representative (typical) time dependences 
of the orthogonal dynamic variable W0 for a representative 
of each age group. In the Memory Functions Formalism, 
orthogonal dynamic variables Wi   are used to calculate the 
autocorrelation function and memory functions, as well as 
measures of statistical memory (for example, the parameter 
ε1(0)) [16, 17]. The orthogonal dynamic variable W0 is 
composed of the deviations of the initial dynamometric 

parameter relative to the zero value: W0 =  {𝛿𝑥𝑗}.  Other 

orthogonal variables are defined through the Gram-Schmidt 
orthogonalization procedure. 

The time dynamics of an experimentally recorded 
parameter of a complex system can be represented as a 
discrete time series xj  of a variable X: 

{ ( ), ( ), ( 2 ),..., ( ( 1) )},X x T x T x T x T N         

 
where T is the initial time of start from which recording of 
experimental parameter started, (N–1)τ is the signal 
recording time, τ= Δt  is the sampling time step. 

At the preparatory stage, subjects from three age groups: 

the first group, volunteers aged 20–24 years, the second, 64–

69 years, and the third, 75–90 years old, pressed the 

dynamometer sensor with maximum force with the side of 

the index finger [10, 11]. Table I provides a description of 

the participants in this study. 

TABLE I.  DESCRIPTION OF PARTICIPANTS. 

Group 

number 

Number of 

men 

Number of 

women 

Average age, 

years 

I group 5 5 22 

II group 4 5 67 

III group 5 5 82 

After that, the subjects pressed the sensor with a force of 
5, 10, 20, and 40% of the maximum pressing force. 
Compliance with the required pressure value on the sensor 
was carried out by visual control: the participants in the 
experiment saw two lines on the monitor screen – the 
calculated and experimental values of the pressing force. 
The noted conditions for recording dynamometric signals 
for subjects of different age groups allow concluding about 
age-related changes not only in the human neuromuscular 
system, but also in visual-motor coordination. Recall that 
hand-eye coordination consists of a person's ability to 
simultaneously use the eyes and hands when performing 
actions. Two attempts were made for each level. 

Visual analysis of the spatio-temporal structure of 
dynamometric signals allows us to come to the following 
conclusions. Time records for groups II and III are 
distinguished by stronger fluctuations and large oscillating 
structures. Oscillations of hand-eye coordination are 
associated with physiological brain rhythms. However, the 
results presented are only primary data that poorly reflect 

the physical mechanisms of biological aging of the human 
neuromuscular system.  

IV. RESULTS AND DISCUSSION 

Here we consider only the results of a qualitative 
analysis of the spectral behavior of the temporal correlation 
functions and statistical memory functions, as well as a 
quantitative comparison of the values of the parameter ε1(0) 
calculated for the dynamometric signals of the subjects of 
different age groups. In addition, the relaxation time for the 
time correlation functions will be calculated. 

The study of the TCF spectral behavior and memory 
functions calculated for the dynamometric signals of three 
age groups allows establishing their periodic patterns. On 
the power spectra of the TCF and memory functions for the 
muscle contraction signals of subjects of group I, bursts of 
intensity at frequencies of 20 Hz and 40 Hz are clearly 
manifested. These bursts reflect the synchronization of the 
rhythms of muscle contractions of motor units with brain 
rhythms. The structure of the spectra is disturbed for 
representatives of groups II and III, which may indicate age-
related changes in the transmission of nerve impulses from 
the brain to peripheral motor units. We observe a shift of 
these peaks to higher frequencies. In addition, the 
appearance of additional oscillations in the dynamics of the 
output power pulse was found. 

Fig. 2 shows the spread of values of the parameter ε1(0), 

calculated for the dynamometric signals of volunteers from 

different age groups. For each level of force pressing, the 

calculation was performed in two attempts. The range of 

ε1(0) values for representatives of all age groups 

corresponds to the scenario with moderate statistical 

memory. The average values of the parameter ε1(0) for all 

four levels (two attempts for each level) for representatives 

of group I is 39.7, group II – 68.2, group III – 83.4. 
Comparison of the average values of the parameter indicates 

a twofold weakening of the memory effects for the signals 

of group III representatives in comparison with young 

volunteers. The weakening of the memory effects of visual-

motor coordination with age leads to an increase in 

stochastic components in the regulation of motor units by 

the human neuromuscular system.  

Fig. 3 shows the spread of values of relaxation times τR, 
calculated for dynamometric signals of representatives of 
three age groups. Two attempts were recorded for each level 
of the power impulse.  

Calculation of relaxation times was conducted by 
estimating the area under the temporal correlation function 
determined for each dynamometric signal: 

 . τ
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Average values of relaxation time τR or all four levels 
(two attempts for each level) for representatives of group I is 
57τ, group II – 107.4τ, group III – 180.5τ. Comparison of 
the average values of relaxation times for different age 
groups indicates a significant lengthening of these times for 
subjects of groups II and III. In addition, in the case of 
young volunteers, increased pressure leads to a lengthening 
of relaxation times, while in the case of representatives of 
groups II and III, an ambiguous picture is observed.  



 

 

Fig. 2. The scatter of the parameter ε1(0)  values  for dynamometric signals recorded at different levels of depression in three age groups of people. Two 

attempts were made for each level. The average values of the parameter ε1(0)  for each age group are indicated.  

 

Fig. 3.  Scatter of relaxation time τR values or dynamometric signals recorded at different levels of depression in three age groups of people. Two attempts 
were made for each level. The average values of the parameter τR for each age group are indicated. 



We have found that the dynamics of the force signals of 
volunteers of the second and third groups is characterized by 
shorter lifetimes of statistical memory, as well as a transition 
from periodic to more probabilistic behavior. We 
established periodic patterns of dynamometric signals of 
healthy subjects from different age groups. They reflect the 
synchronization of the rhythms of muscle contractions of 
motor units with brain rhythms. With age, this 
synchronization occurs in a higher frequency region. The 
calculated relaxation times for the subjects from older age 
groups were 2–3 times higher than those for young 
volunteers.  

V. CONCLUSIONS 

Living systems produce physiological signals on various 
spatio-temporal scales with a complex structure. Biological 
aging processes lead to obvious changes in these structures. 
The observed changes can be quantified using various 
statistics and parameters. 

In this work, we studied the physical mechanisms of 
biological aging of visual-motor coordination in healthy 
subjects from different age groups. As experimental data, 
signals of pressing the index finger on the dynamometric 
sensor were considered. Subsequently, the volunteers 
pressed the sensor with varying degrees of pressure from the 
maximum value. Within the framework of the Memory 
Functions Formalism, we performed an of the statistical 
memory effects and relaxation features of time signals.  

The obtained results will be of interest from the point of 
view of biophysics, physics of complex systems, 
gerontology, and neurophysiology [22, 23]. In addition, 
these results can be used to control robotic devices and 
cyber-physical systems, for example, bionic limb 
prostheses, neurocomputer interfaces, as well as to consider 
vibro- and mechanotactile communication [24, 25]. 

Further research will be aimed at studying age-related 
changes in short- and long-term relaxation patterns of 
human muscle activity. This will allow us to consider the 
physical mechanisms of biological aging of the human 
neuromuscular system from the point of view of detailing 
the nature of relaxation processes [26–28]. 
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