
# ИССЛЕДОВАНИЕ РЫНКА ПРОМЫШЛЕННОЙ РОБОТОТЕХНИКИ 2025

ОСНОВНЫЕ ПОКАЗАТЕЛИ









# ИССЛЕДОВАНИЕ РЫНКА ПРОМЫШЛЕННОЙ РОБОТОТЕХНИКИ 2025

ОСНОВНЫЕ ПОКАЗАТЕЛИ

Исследование рынка промышленной робототехники 2025 — Иннополис: АНО ВО «Университет Иннополис», 2025. —38 с.: ил., табл.

### Авторский коллектив:

Воробьева Анастасия, Евсеев Константин, Исаев Михаил, Кадиров Алмаз, Насибуллин Азат, Смирнов Николай, Тюльпанова Наталья

### Дизайн и верстка:

Тюльпанова Наталья

### Благодарим за помощь в исследовании:

Министерство промышленности и торговли Российской Федерации, Национальную ассоциацию участников рынка робототехники (НАУРР), Консорциум робототехники и систем интеллектуального управления, а также компании, которые прошли опрос, проявляли интерес к исследованию и дали обратную связь

# СОДЕРЖАНИЕ



| 4 Вве | дение |
|-------|-------|
|-------|-------|

# 5 МИРОВОЙ РЫНОК ПРОМЫШЛЕННОЙ РОБОТОТЕХНИКИ

- 12 Республика Корея
- 13 Сингапур
- 14 Китай
- 15 Германия
- 16 Япония

17 ТРЕНДЫ В ОБЛАСТИ РОБОТОТЕХНИКИ

# 19 РЫНОК ПРОМЫШЛЕННОЙ РОБОТОТЕХНИКИ В РОССИИ

- 25 Проблемы производителей
- 26 Кадры
- 29 Государственные меры поддержки роботизации промышленности
- 31 Сеть центров развития промышленной робототехники
- 33 Результаты опроса
- 35 КЛЮЧЕВЫЕ ВЫВОДЫ ИССЛЕДОВАНИЯ
- 36 РЕКОМЕНДАЦИИ ПО РАЗВИТИЮ ОТРАСЛИ

# ВВЕДЕНИЕ

На сегодняшний день роботы стали неотъемлемым элементом современных производственных процессов, эволюционировав от узкоспециализированных автоматизированных ячеек к сложным, гибким и многофункциональным системам, способным адаптироваться к изменяющимся условиям. Современный этап развития промышленной робототехники характеризуется интеграцией искусственного интеллекта (ИИ), машинного обучения и сенсорных технологий, что расширяет их сферу применения.

В Российской Федерации рынок промышленной робототехники находится на этапе активного роста, стимулируемого национальными и федеральными проектами, в частности национальным проектом «Средства производства», целью которого является обеспечение технологической независимости в области производства высокотехнологичных станков и повышение уровня промышленной роботизации. В рамках этого проекта реализуется инициатива «Развитие промышленной робототехники и автоматизации производства», которая включает комплекс мер государственной поддержки для производителей и потребителей робототехники. Также рост рынка обусловлен задачами повышения производительности труда в условиях структурного дефицита квалифицированных кадров. Согласно поручению Президента РФ, к 2030 году страна должна войти в топ-25 мировых лидеров по плотности роботизации.



Тем не менее отрасль сталкивается с серьезными вызовами: зависимость от импорта критических компонентов (сервоприводов, редукторов), дефицит квалифицированных инженерных кадров и высокая стоимость внедрения, особенно для малого и среднего бизнеса. Дополнительные сложности связаны с необходимостью адаптации роботизированных решений к устаревшей производственной инфраструктуре и отсутствием единых отраслевых стандартов для комплектующих.

Настоящее исследование ставит целью провести комплексный анализ текущего состояния мирового и российского рынка промышленной робототехники. Работа структурирована в два основных раздела: обзор мировых лидеров по плотности роботизации, обзор глобальных тенденций и детальный анализ ситуации в России, с опорой на последние доступные данные и экспертные оценки.

4 663 698

роботов эксплуатируется в мире

16,5 млрд долл.

объем рынка промышленной робототехники 177

роботов на 10 тыс. работников

средний показатель плотности роботизации в мире

# ТОП-5 СТРАН ПО ПЛОТНОСТИ РОБОТИЗАЦИИ, ЕД. НА 10 ТЫС. РАБОТНИКОВ

| 1220 |
|------|
| 818  |
| 567  |
| 449  |
| 446  |
|      |

542 076

новых промышленных роботов было установлено в мире в 2024 году

76%

всех установленных промышленных роботов в мире приходится на топ-5 стран

43%

всех промышленных роботов в мире установлены в Китае

54%

всех новых промышленных роботов в мире в 2024 году установлены в Китае

По данным Международной федерации робототехники (IFR), объем мирового рынка промышленной робототехники в 2024 году составил около 16,5 млрд долларов, что является более консервативной оценкой по сравнению с другими прогнозами.

При этом данные о фактическом использовании промышленных роботов подтверждают поступательное развитие рынка. Согласно данным World Robotics, 2024 год стал вторым в истории по объемам внедрения промышленных роботов, отстав от рекордного показателя двухлетней давности всего на 2%.

Этот рост связывают с активным переходом отраслей к цифровой автоматизации. В результате общемировой парк промышленных роботов вырос на 9%, достигнув отметки в 4 664 698 единиц.





Азиатско-Тихоокеанский регион сохраняет статус лидера глобального рынка промышленной робототехники.

Европейский рынок в 2024 году сократился на 8%, тем не менее, объем в 85 000 установок стал вторым лучшим результатом в истории.

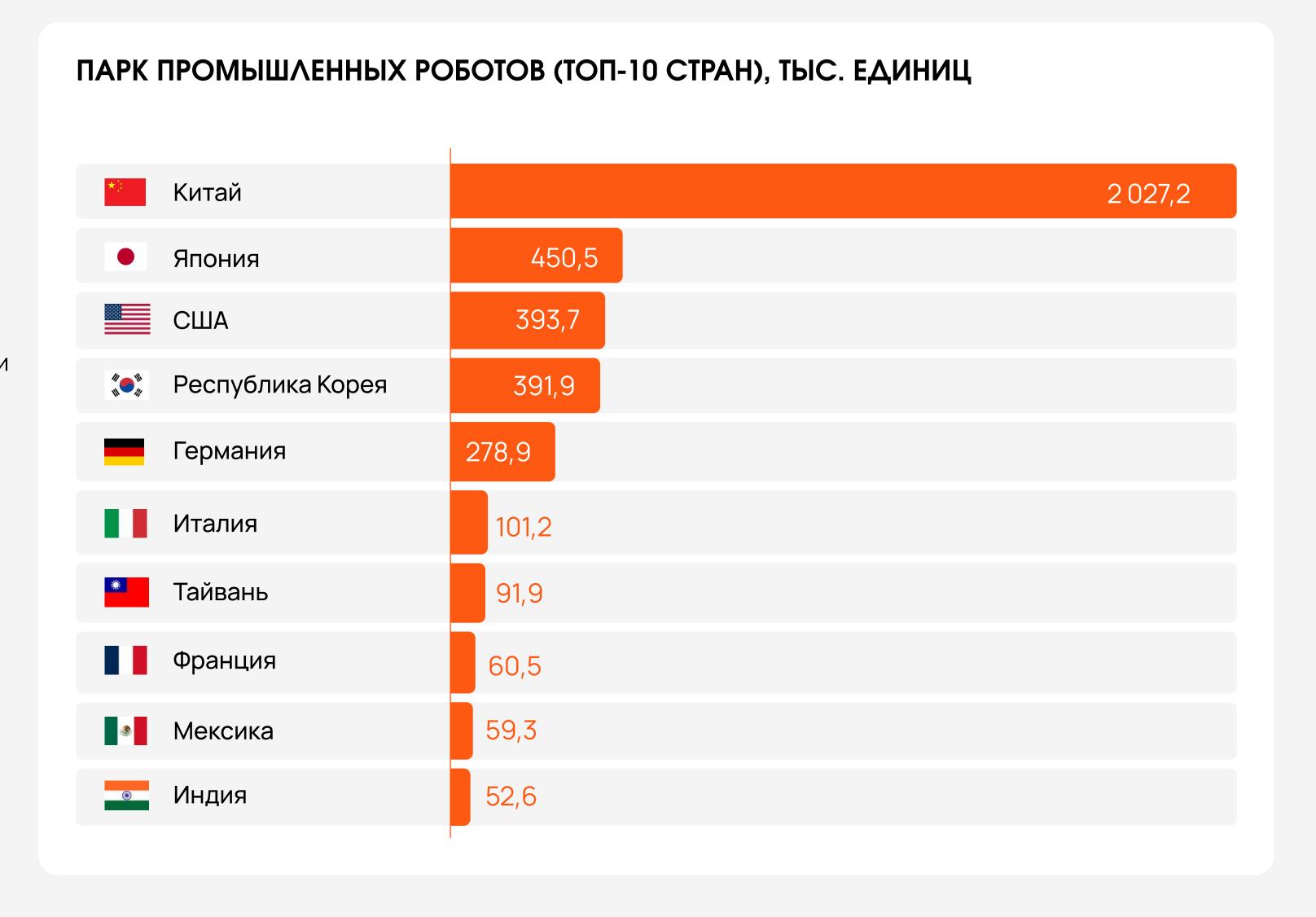
Рынок Северной и Южной Америки четвертый год подряд превысил отметку в 50 000 установок, хотя в 2024 году и сократился на 10% до 50 100 единиц.




Источник: International Federation of Robotics, 2024

Китайский рынок демонстрирует беспрецедентные масштабы, обеспечивая 54% мирового объема новых установок. В 2024 году показатель достиг исторического максимума в 295 000 единиц. Существенным индикатором зрелости национальной отрасли стало преобладание локальных производителей, доля которых на внутреннем рынке составила 57%. Совокупный эксплуатационный парк превысил 2 млн единиц с прогнозируемым среднегодовым темпом роста на уровне 10% до 2028 года.




Мировой рынок отличается высокой степенью концентрации. Пять ведущих стран — Китай, Япония, США, Республика Корея и Германия — формируют 80% всех новых поставок и 76% всего эксплуатируемого парка промышленных роботов.

Это подчеркивает, что развитие робототехники по-прежнему сконцентрировано в узком кругу государств с высокоразвитой обрабатывающей промышленностью. При этом разрыв между лидерами и остальными странами огромен: например, эксплуатационный парк Италии более чем в 20 раз уступает китайскому.



Мировой рынок отличается высокой степенью концентрации. Пять ведущих стран — Китай, Япония, США, Республика Корея и Германия — формируют 80% всех новых поставок и 76% всего эксплуатируемого парка промышленных роботов.

Это подчеркивает, что развитие робототехники по-прежнему сконцентрировано в узком кругу государств с высокоразвитой обрабатывающей промышленностью. При этом разрыв между лидерами и остальными странами огромен: например, эксплуатационный парк Италии более чем в 20 раз уступает китайскому.



Источник: International Federation of Robotics, 2024

Страна с самой высокой плотностью роботизации — Республика Корея — 1 220 роботов на 10 000 сотрудников), благодаря развитой электронной и автомобильной промышленности.

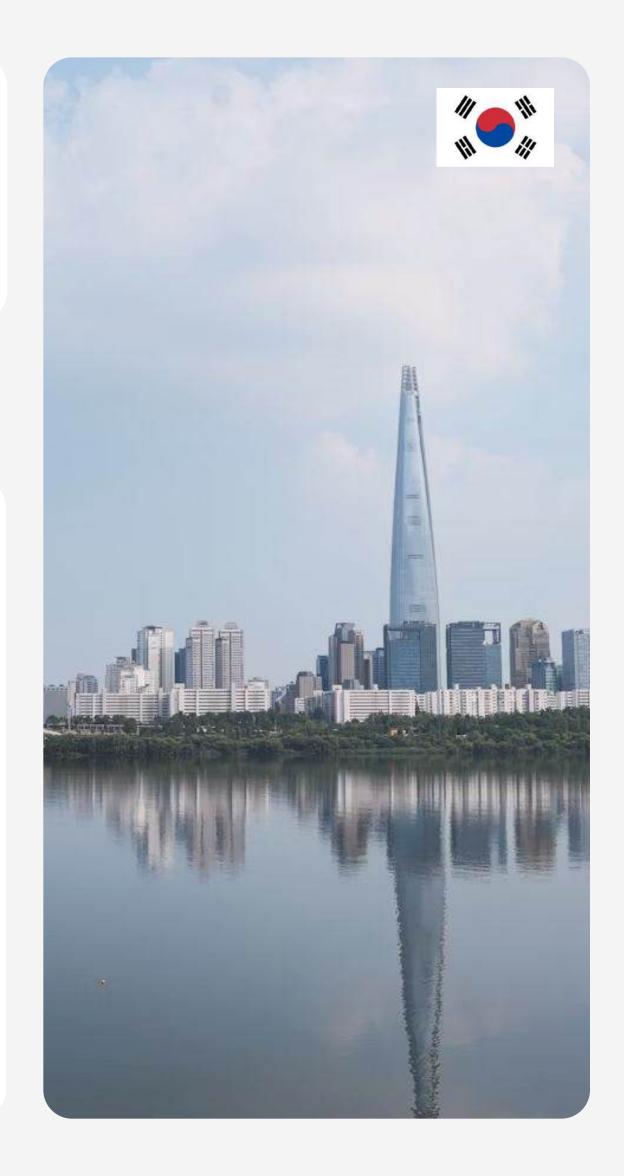
Сингапур следует за ней с 818 роботами на 10 000 сотрудников. В Сингапуре низкая численность работников в обрабатывающей промышленности — 485 600 человек. Поэтому установка 39 700 единиц достаточно для повышения плотности роботизации.

Плотность роботизации в Китае выросла до 567 роботов на 10 000 сотрудников. В первую десятку Китай вошел только в 2019 году. И за два года он поднялся на пятое место, а в 2023 году обогнал Германию и Японию, заняв третье место. В обрабатывающей промышленности в Китае заняты 36 миллионов человек, но масштабные инвестиции обеспечивают высокую плотность роботизации.

Германия (449 роботов на 10 000 сотрудников) и Япония (446) остались на четвертом и пятом местах соответственно.



# РЕСПУБЛИКА КОРЕЯ


1012

плотность роботизации в 2023 году, единиц на 10 000 сотрудников

391 900

эксплуатируемый парк промышленных роботов в 2024 году 30 600

количество установок промышленных роботов в 2024 году



# НАЦИОНАЛЬНЫЕ ПРОГРАММЫ И МЕРЫ ПОДДЕРЖКИ

2023

# План действий по развитию интеллектуальной робототехники

- Увеличить объем рынка робототехнической отрасли до 10,7 млрд долларов в 2023 году;
- Достичь показателя в 20 робототехнических компаний национального уровня с капитализацией свыше 71 млн долларов;
- Достичь показателя в 700 000 промышленных роботов, внедренных в производство.

163 МЛН ДОЛЛ.

2023

# Четвертый базовый план по интеллектуальным роботам

Развитие индустрии роботов как ключевой отрасли четвертой промышленной революции и поддержание инноваций в области производства и услуг, увеличение показателей локализации производства роботов с 44% до 80% к 2030 году.

1 млн установок роботов в различных производственных секторах

**2,3 ΜΛΡΔ ΔΟΛΛ.**κ 2030 г.

# СИНГАПУР

770

плотность роботизации в 2023 году, единиц на 10 000 сотрудников

37 247

эксплуатируемый парк промышленных роботов в 2023 году  $H/\Delta$ 

количество установок промышленных роботов в 2024 году

# НАЦИОНАЛЬНЫЕ ПРОГРАММЫ И МЕРЫ ПОДДЕРЖКИ

The National Robotics Programme

Мультиагентская национальная платформа под руководством Агентства по науке, технологиям и исследованиям, которое координирует исследования, разработки и внедрение ключевых решений в области робототехники

2016

Выявление перспективных направлений для страны, развитие уникальных компетенций за счет финансирования прикладных исследований и разработок, имеющих практическое применение

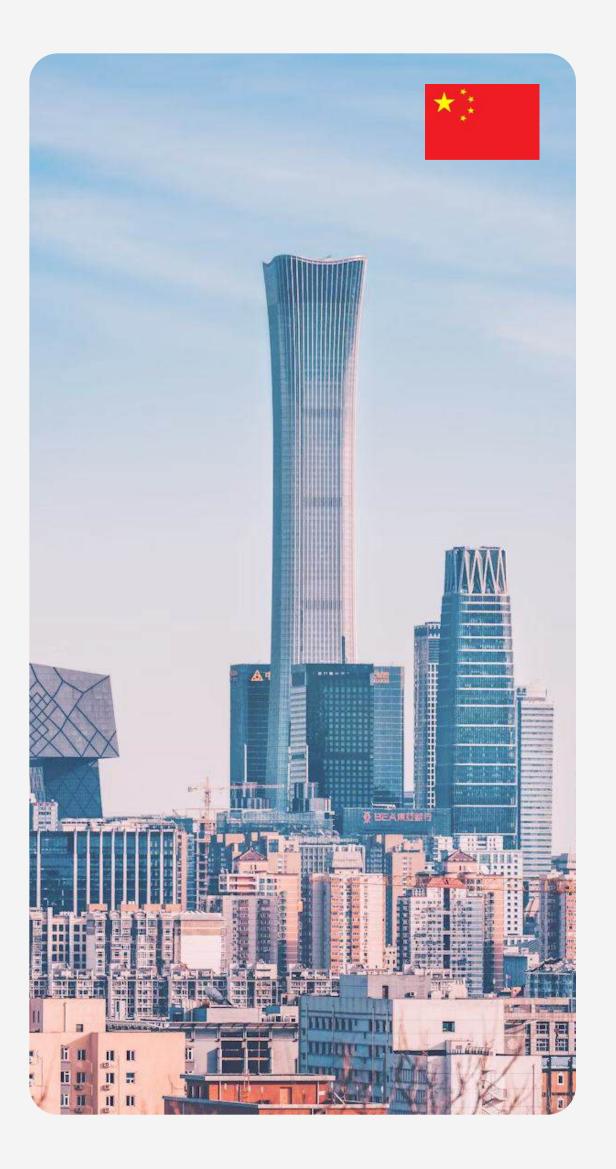
2024

Поощрение разработки и внедрения робототехнических комплексов в секторах производства, здравоохранения и логистики

60 ΜΛΗ ΔΟΛΛ.



# КИТАЙ


470

плотность роботизации в 2023 году, единиц на 10 000 сотрудников

2 027 200

эксплуатируемый парк промышленных роботов в 2024 году 295 000

количество установок промышленных роботов в 2024 году



# НАЦИОНАЛЬНЫЕ ПРОГРАММЫ И МЕРЫ ПОДДЕРЖКИ

2023-2024

# Intelligent Robots

реализация задач в сфере научнотехнологических инноваций

90,1 МЛН ДОЛЛ.

Создан венчурный фонд для робототехники и ИИ с целью привлечения 138 млрд долларов капитала к 2045 году

# Региональные меры

Фонд развития робототехники (Пекин)

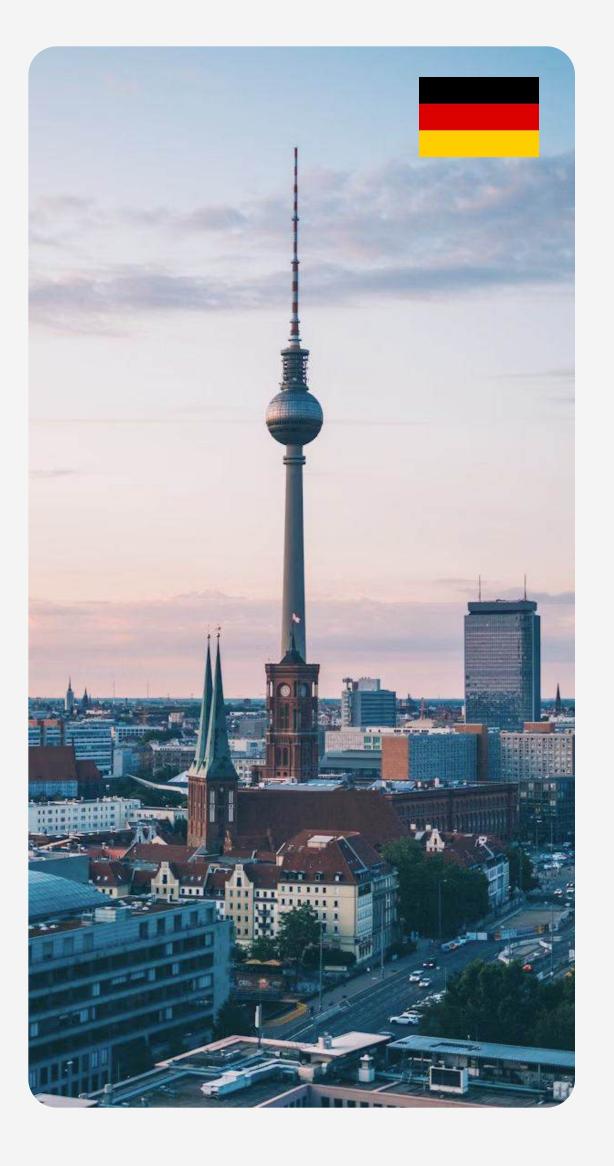
1,4 ΜΛΡΔ ΔΟΛΛ.

Меры поддержки робототехники (Шэньчжэнь)субсидии покрывают до 60% затрат предприятий

682 MЛH ДОЛЛ.\*

<sup>\*</sup> средневзвешенный курс доллара в 2024 г.

# ГЕРМАНИЯ


429

плотность роботизации в 2023 году, единиц на 10 000 сотрудников

278 900

эксплуатируемый парк промышленных роботов в 2024 году 27 000

количество установок промышленных роботов в 2024 году



# НАЦИОНАЛЬНЫЕ ПРОГРАММЫ И МЕРЫ ПОДДЕРЖКИ

2009–2014

### **AUTONOMIK**

развитие робототехнических решений в промышленности 46,4 M/H ДО///.

2013–2017

# AUTONOMIK für Industrie 4.0

интеграция промышленных технологий с современными ИТ-решениями 46,4 МЛН ДОЛЛ.

2009–2014

### **PAICE**

3,5% BB∏

создание цифровых платформ для промышленного применения 52,7 МЛН ДОЛЛ.

2018

### High-Tech Strategy 2025

ежегодные инвестиции в исследования и разработки 2020

# Together Through Innovation

B рамках High-Tech Strategy 2025

73.8 МЛН ДОЛЛ./ЕЖЕГОДНО

Закон о научно-исследовательской надбавке предусматривает 25% налоговый вычет на НИОКР (до 541 тыс. долл.\* на компанию), который распространяется и на робототехнику

<sup>\*</sup> средневзвешенный курс доллара в 2024 г.

# **ЯПОНИЯ**

419

плотность роботизации в 2023 году, единиц на 10 000 сотрудников

450 500

эксплуатируемый парк промышленных роботов в 2024 году 44 500

количество установок промышленных роботов в 2024 году



# НАЦИОНАЛЬНЫЕ ПРОГРАММЫ И МЕРЫ ПОДДЕРЖКИ

2021–2022

Проект по разработке новых промышленных роботов и роботов с автономным управлением для укрепления цепочек поставок и поддержания логистических услуг

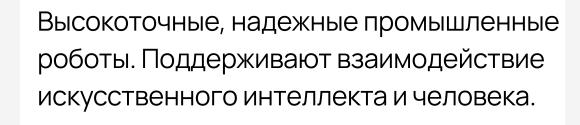
147,3 МЛН ДОЛЛ.

2023

### Moonshot 10

реализация динамичного общества, находящегося в равновесии с глобальной окружающей средой и свободного от ограничений ресурсов, за счет разнообразного применения термоядерной энергии к 2050 году в рамках программы прорывных исследований и разработок «Moonshot»

Проекты НИОКР в области робототехники 640 МЛН ДОЛЛ.


<sup>\*</sup> средневзвешенный курс доллара в 2024 г.

# 10 КРУПНЕЙШИХ КОМПАНИЙ-ПРОИЗВОДИТЕЛЕЙ РОБОТОВ В МИРЕ









электроника

металлообработка

автомобилестроение

**ABB Robotics** 

Швейцария

### **FANUC**

**FANUC** 

Япония

Знаменитые желтые роботизированные руки. Быстрые, прочные, с длительным сроком службы.

автомобилестроение электроника умные заводы





Германия

Эксперт в области тяжелых и коллаборативных роботов. Немецкая инженерная точность

автомобилестроение металлургия медицина

# **Da-Jiang Innovations**



Китай

Мировой лидер в производстве беспилотников. Расширение наземной робототехники и образования.

сельское хозяйство аэрофотосъемка обучение робототехнике инспекция

### Yaskawa Electric



логистика

ABB

Япония

Сильные стороны сварки, распыления, обработки материалов. И глубокое управление сервоприводами/ двигателями.

промышленная автоматизация производство

# **Universal Robots**



Дания

Лидер в области коллаборативных роботов. Прост в программировании, развертывании и эксплуатации.

МСП образование электроника легкая промышленность

# **Boston Dynamics**

пищевая промышленность



США

Расширенная мобильность и искусственный интеллект. Роботы Spot и Atlas.

демонстрация НИОКР инновации инспекция

### **Doosan Robotics**



Республика Корея

Быстрорастущая компания, занимающаяся совместной робототехникой. Удобные и гибкие в использовании.

производство здравоохранение логистика

### **Epson Robots**



Япония

Компактные SCARA и 6-осевые роботы. Высокоточная автоматизация.

электроника ) (полупроводники медицинские приборы

# **Kawasaki Robotics**



Япония

Более 50 лет опыта в робототехнике. Объединяет традиции и интеллектуальные технологии.

автомобилестроение тяжелая промышленность аэрокосмическая промышленность энергетика

# ТРЕНДЫ

# Искусственный интеллект в робототехнике

Использование различных технологий
ИИ позволяет роботам выполнять широкий
спектр задач более эффективно: аналитический
ИИ помогает роботам обрабатывать
и интерпретировать большие объемы данных
для работы в изменяющихся средах; физический
ИИ позволяет им обучаться в виртуальных
моделях, перенимая опыт без необходимости
программирования; генеративный
ИИ применяется для создания обучающих
сценариев и оптимизации взаимодействия
человека и машины.

# Расширение применения коллаборативных роботов

В отличие от традиционных промышленных роботов, требующих ограждений и специальных рабочих зон, коботы изначально спроектированы для совместной работы с людьми, что позволяет внедрять их даже в условиях ограниченных производственных площадей.

# Конвергенция робототехники и интернета вещей

Использование различных технологий ИИ позволяет роботам выполнять широкий спектр задач более эффективно: аналитический ИИ помогает роботам обрабатывать и интерпретировать большие объемы данных для работы в изменяющихся средах; физический ИИ позволяет им обучаться в виртуальных моделях, перенимая опыт без необходимости программирования; генеративный ИИ применяется для создания обучающих сценариев и оптимизации взаимодействия человека и машины.

# Эволюция внутризаводского транспорта: переход от автоматически управляемых тележек (AGV) к автономным мобильным роботам (AMR)

Автономные мобильные роботы (AMR) вытесняют системы с фиксированными маршрутами (AGV), обеспечивая гибкую и интеллектуальную автоматизацию внутризаводской логистики благодаря способности самостоятельно ориентироваться в динамичной среде.

# RaaS как инструмент расширения доступа к робототехнике

Использование различных технологий ИИ позволяет роботам выполнять широкий спектр задач более эффективно: аналитический ИИ помогает роботам обрабатывать и интерпретировать большие объемы данных для работы в изменяющихся средах; физический ИИ позволяет им обучаться в виртуальных моделях, перенимая опыт без необходимости программирования; генеративный ИИ применяется для создания обучающих сценариев и оптимизации взаимодействия человека и машины.

# Гуманоидные роботы

Человекоподобная форма и развитая моторика позволяют им выполнять широкий круг задач там, где использование традиционных промышленных систем затруднено. Сегодня такие машины испытываются в автомобильной промышленности и складской логистике, где они способны автоматизировать процессы сборки и транспортировки.

# AR/VR/MR в робототехнике

Технологии AR/VR/MR предоставляют широкий спектр возможностей: от дистанционного управления роботами в опасных ил

# Периферийные вычисления (edge computing)

Переход к парадигме периферийных вычислений позволяет производить обработку данных непосредственно на уровне источника их генерации – в самом роботе или близко к нему. Это минимизирует задержки при передаче информации, что критически важно для задач, требующих принятия решений в режиме реального времени.

# Роботы решают проблему нехватки рабочей силы

Робототехника становится стратегическим ответом на глобальный дефицит рабочей силы, автоматизируя монотонные и опасные операции и высвобождая человеческие ресурсы для более сложных задач.

> 20 000

эксплуатационный парк промышленных роботов

**8,2** млрд руб.

объем рынка промышленной робототехники 29 роботов на 10 тыс. работников

показатель плотности роботизации

# ТОП-5 РЕГИОНОВ ПО КОЛ-ВУ УСТАНОВЛЕННЫХ РОБОТОВ, ЕД.

Московская область 1904

г. Санкт-Петербург 1869

Самарская область 1713

г. Москва 1488

Республика Татарстан 1385

8 023

новых промышленных роботов было установлено в 2024 году

20 / 152

компании-производители / интеграторы промышленных роботов

62%

годовой прирост парка промышленных роботов в 2024 г.

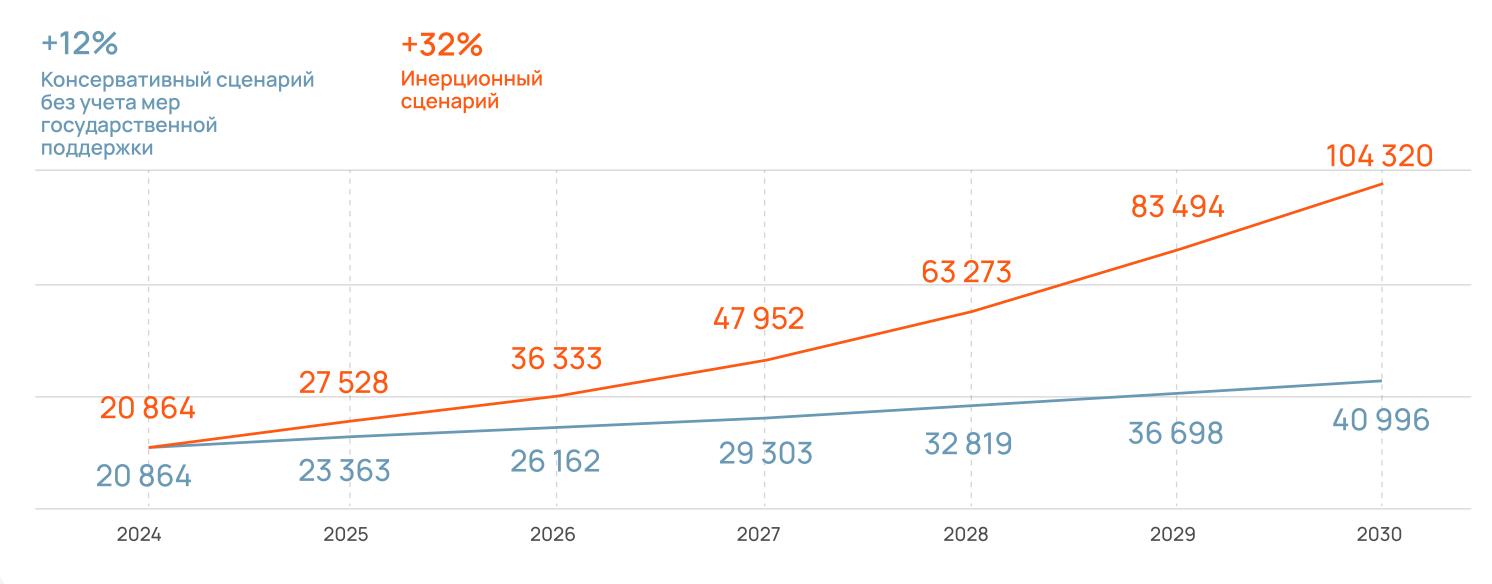
≈**60** 000

человек

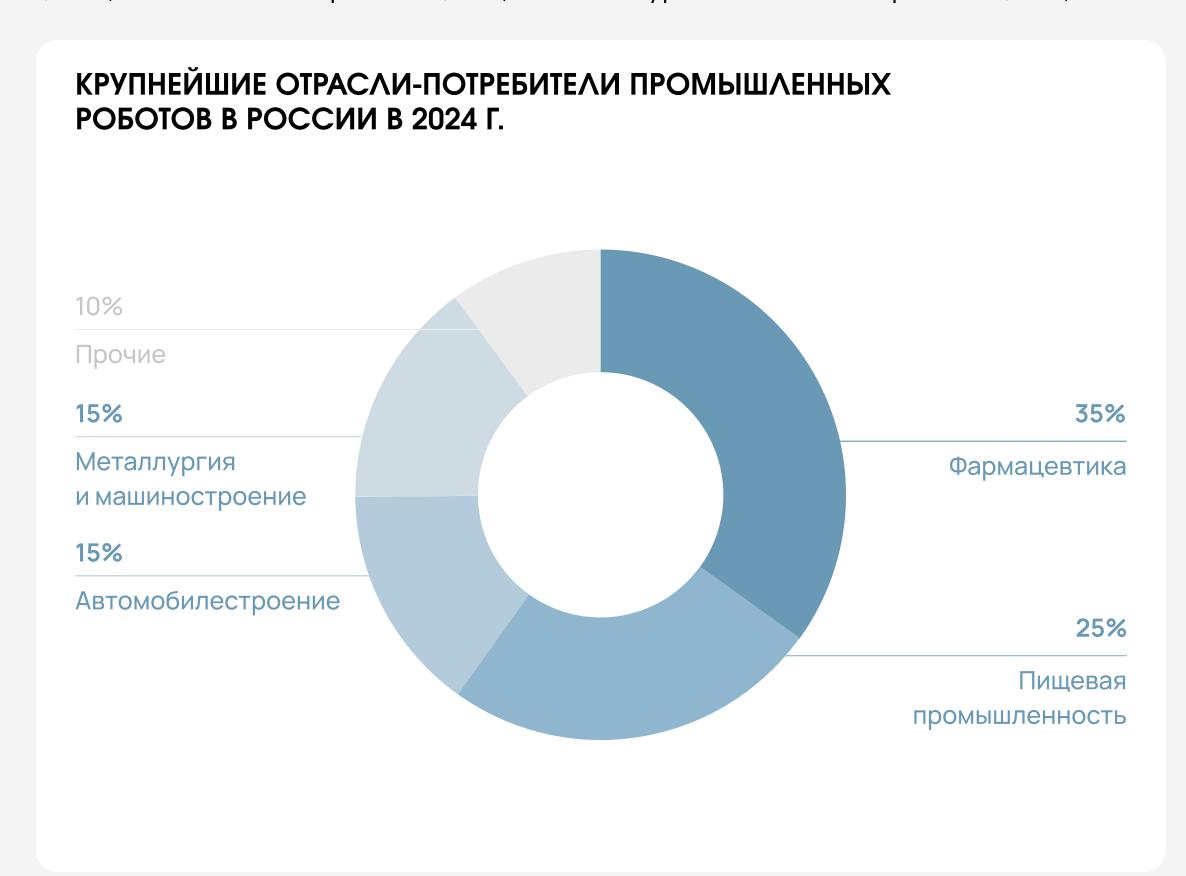
дефицит кадров в отрасли

В последние годы промышленная робототехника стала одним из ключевых факторов модернизации производственной базы России и повышения конкурентоспособности отечественной экономики.

Глобальный тренд автоматизации и цифровизации производства не обошел стороной российский рынок, подталкивая компании к активному внедрению робототехнических систем и сложных автоматизированных комплексов.


Несмотря на сложные экономические условия, санкционное давление и технологические вызовы, объем российского рынка промышленной робототехники демонстрирует устойчивый рост, что подтверждается данными Росстата и экспертными оценками ведущих отрасле-вых институтов.

Согласно указу Президента, к 2030 году Россия должна занять 25-е место в мировом рейтинге по плотности роботизации.


В период до 2030 года существуют консервативные сценарии роста количества установленных промышленных роботов — без учета влияния позитивных факторов мер государственной поддержки отрасли (на 12%) и инерционные, учитывающие аспекты государственной политики и меры стимулирования рынка (до 32% в год).

Для достижения целевых показателей к 2030 году необходимо внедрить около 104 тыс. промышленных роботов при условии, что уровень занятости в обрабатывающей промышленности в 2030 году останется на уровне 2024 года. Для динамичного роста отрасли потребуется комплексное развитие как производственных мощностей, так и стимулирование спроса.

# КОЛИЧЕСТВО УСТАНОВЛЕННЫХ ПРОМЫШЛЕННЫХ РОБОТОВ В РОССИИ (ЭКСПЛУАТАЦИОННЫЙ ПАРК), С ПРОГНОЗОМ ДО 2030 ГОДА



В 2024 году крупнейшими потребителями промышленных роботов в России стали предприятия фармацевтической отрасли (35%), пищевой промышлен-ности (25%), автомобилестроения (15%) и металлургии и машиностроения (15%).



Мощности отечественного производства также пока невелики: только две компании выпускают свыше 200 роботов в год, в то время как остальные производители ограничиваются 26 - 100 единицами. Опросы показывают, что при наличии спроса компании готовы нарастить выпуск до 1,5 - 3 тыс. единиц в год. Однако ключевым сдерживающим фактором, по мнению 75% производителей, остается низкий спрос со стороны потенциальных потребителей.

| Причина                                                                       | Кол-во компаний,<br>шт | Доля компаний,<br>% |
|-------------------------------------------------------------------------------|------------------------|---------------------|
| Отсутствие необходимости в использовании для текущей деятельности организации | 155 012                | 40,36               |
| Недостаток собственных денежных средств                                       | 56 738                 | 14,77               |
| Недостаток квалифицированных специалистов                                     | 50 489                 | 13,15               |
| Недостаток финансовой поддержки<br>со стороны государства                     | 46 227                 | 12,04               |
| Отсутствие финансово-хозяйственной деятельности                               | 40 879                 | 10,64               |
| Другие причины                                                                | 34 683                 | 9,03                |

Источник: Минпромторг России, Росстат

3-10 млн руб.

стоимость промышленного робота российского производства

5-20 млн руб.

стоимость промышленного робота российского производства

3-9 месяцев

период внедрения промышленного робота в производство

2,5-4 года

период окупаемости робота в логистике, упаковке, пищевой и электронной промышленности

до 6 лет

период окупаемости робота в машиностроении и металлообработке

до1,6 млн руб.

в год экономит один робот, который заменяет один рабочий цикл

20

компаний производят промышленных роботов

152

компаний-интеграторов промышленных роботов

25

компаний-производителей компонентов

Источник: НАУРР, Университет Иннополис

| Название компании                | Сверхлегкие<br>менее 1 кг | <b>Легкие</b><br>от 1 до 10 кг       | <b>Средние</b><br>от 10 до 200 кг | <b>Тяжелые</b><br>от 200 до 1000 кг | <b>Сверхтяжелые</b><br>более 1000 кг |
|----------------------------------|---------------------------|--------------------------------------|-----------------------------------|-------------------------------------|--------------------------------------|
| ООО «Битроботикс»                |                           |                                      |                                   |                                     |                                      |
| ООО «Рекорд-Инжиниринг»          |                           |                                      |                                   |                                     |                                      |
| АО «ПК НПО "Андроидная Техника"» |                           |                                      |                                   |                                     |                                      |
| ООО «Арипикс Роботикс»           |                           |                                      |                                   |                                     |                                      |
| ООО «Аркодим-Про»                |                           |                                      |                                   |                                     |                                      |
| ООО «Эйдос-Робототехника»        |                           |                                      |                                   |                                     |                                      |
| ООО «Робопро»                    |                           |                                      |                                   |                                     |                                      |
| ООО «Биайди Технолоджис Рус»     |                           |                                      |                                   |                                     |                                      |
| ООО «Авангардпласт»              |                           |                                      |                                   |                                     |                                      |
| АО «Сага Роботикс»               |                           |                                      |                                   |                                     |                                      |
| ООО «Роботех»                    |                           |                                      |                                   |                                     |                                      |
| ООО «Уникальные Роботы»          |                           |                                      |                                   |                                     |                                      |
| ООО «Валдай Роботы»              |                           |                                      |                                   |                                     |                                      |
| ООО «Невлабс»                    |                           |                                      |                                   |                                     |                                      |
| ООО «Русский Робот»              |                           |                                      |                                   |                                     |                                      |
| ООО «Завод Роботов»              |                           |                                      |                                   |                                     |                                      |
| ООО «Робиннком»                  |                           |                                      |                                   |                                     |                                      |
| ООО «Промобот»                   |                           |                                      |                                   |                                     |                                      |
| OOO «Агророботикс Альфа»         |                           |                                      |                                   |                                     |                                      |
| ООО «Технорэд»                   |                           |                                      |                                   |                                     |                                      |
| Примеры моделей                  | FANUC M-1iA, EPSON RC90   | KUKA KR 6 R900, Universal Robots UR5 | ABB IRB 2600, FANUC M-20iA        | KUKA KR TITAN, FANUC R-2000iC       | FANUC M-2000iA (2300 кг)             |

Источник: Университет Иннополис

| Название компании                 | < 600 | < 800 | < 1000 | < 1300 | < 1500 | <b>&lt; 1800</b> | < 2100 | < 3 100 | < 3 500 | > 3 500 |
|-----------------------------------|-------|-------|--------|--------|--------|------------------|--------|---------|---------|---------|
| ООО «Битроботикс»                 |       | •     |        |        |        |                  |        |         |         |         |
| ООО «Рекорд-Инжиниринг»           |       |       |        |        |        |                  |        |         |         |         |
| АО «ПК НПО "Андроидная Техника" » |       |       |        |        |        |                  |        |         |         |         |
| ООО «Арипикс Роботикс»            |       |       |        |        |        |                  |        |         |         |         |
| ООО «Аркодим-Про»                 |       |       |        |        |        |                  |        |         |         |         |
| ООО «Эйдос-Робототехника»         |       |       |        | •      |        | •                |        |         |         |         |
| ООО «Робопро»                     |       |       |        |        |        |                  |        |         |         |         |
| ООО «Биайди Технолоджис Рус»      |       |       |        | •      |        | •                |        |         |         |         |
| ООО «Авангардпласт»               |       |       |        | •      | •      |                  |        |         |         |         |
| АО «Сага Роботикс»                |       |       |        | •      |        |                  |        |         |         |         |
| ООО «Роботех»                     |       |       |        |        | •      |                  |        |         |         |         |
| ООО «Уникальные Роботы»           |       |       |        |        |        |                  |        |         |         |         |
| ООО «Валдай Роботы»               |       |       |        |        |        |                  |        |         |         |         |
| ООО «Невлабс»                     |       |       |        | •      |        |                  |        |         |         |         |
| ООО «Русский Робот»               |       |       |        |        |        |                  |        |         |         |         |
| ООО «Завод Роботов»               |       |       |        |        |        |                  |        |         |         |         |
| ООО «Робиннком»                   |       |       |        |        |        |                  |        |         |         |         |
| ООО «Промобот»                    |       |       |        |        |        |                  |        |         |         |         |
| ООО «Агророботикс Альфа»          |       |       |        |        |        |                  |        |         |         |         |
| ООО «Технорэд»                    |       | • • • |        |        |        |                  |        |         |         |         |

Источник: Университет Иннополис

# ПРОБЛЕМЫ ПРОИЗВОДИТЕЛЕЙ ПРОМЫШЛЕННОЙ РОБОТОТЕХНИКИ В РОССИИ

# 1. НИЗКАЯ ГЛУБИНА ЛОКАЛИЗАЦИИ И ИМПОРТОЗАВИСИМОСТЬ

Ограниченность собственного производства электронных и механических компонентов препятствует импортозамещению и усиливает зависимость от глобальных поставок. Недостаточный уровень локализации также усложняет доступ к льготному кредитованию, субсидиям и включению в реестр российских промышленных роботов.

# 3. ВЫСОКАЯ СЕБЕСТОИМОСТЬ ИЗ-ЗА ОГРАНИЧЕННЫХ СЕРИЙ

Высокая себестоимость российских роботов обусловлена отсутствием масштабного производства и импортной зависимостью. В результате их цена значительно выше, чем у китайских аналогов.

# 2. ДЕФИЦИТ КАДРОВ

Отрасль промышленной автоматизации сталкивается с серьезным кадровым дефицитом: треть позиций инженеров и системных интеграторов остается вакантной. Проблема обусловлена недостатками в системе подготовки и оттоком специалистов в смежные отрасли.

# 4. НОРМАТИВНЫЕ БАРЬЕРЫ

Основными нормативными барьерами для российских производителей промышленных роботов являются отсутствие единых стандартов классификации и четких регламентов интеграции в различные производства. Это затрудняет процесс сертификации, согласование с регуляторами и взаимодействие с заказчиками.

# КАДРЫ

1 900 000 человек

дефицит квалифицированных кадров в обрабатывающей промышленности в России

**71 000** руб.

средняя заработная плата специалистов без опыта работы

150 000 руб.

средняя заработная плата специалистов с опытом Согласно данным Министерства промышленности и торговли российская обрабатывающая промышленность испытывает критический дефицит квалифицированных кадров, который составляет 1,9 миллиона человек: это 500–530 тысяч специалистов с высшим образованием и 1,4 миллиона работников со средним профессиональным образованием.

Внедрение робототехнических решений обеспечивает замещение операторов на монотонных и физически нагруженных операциях, повышение производительности труда и стабилизацию производственных циклов. Однако отрасль робототехники испытывает собственный дефицит кадров, который по оценкам экспертов на конец 2024 года составлял 60 тысяч. Из них около 30-40 тысяч человек требуется по специализации по роботизации производства. Порядка 12-15 тысяч потребность в специалистах, которые конструируют роботов и около 20 тысяч в специалистах по интеграции. Таким образом, эффективное использование робототехники для замещения человеческого труда в промышленности напрямую зависит от решения внутренней кадровой проблемы отрасли, требующей привлечения инженеров-робототехников, программистов, системных интеграторов и сервисных специалистов.

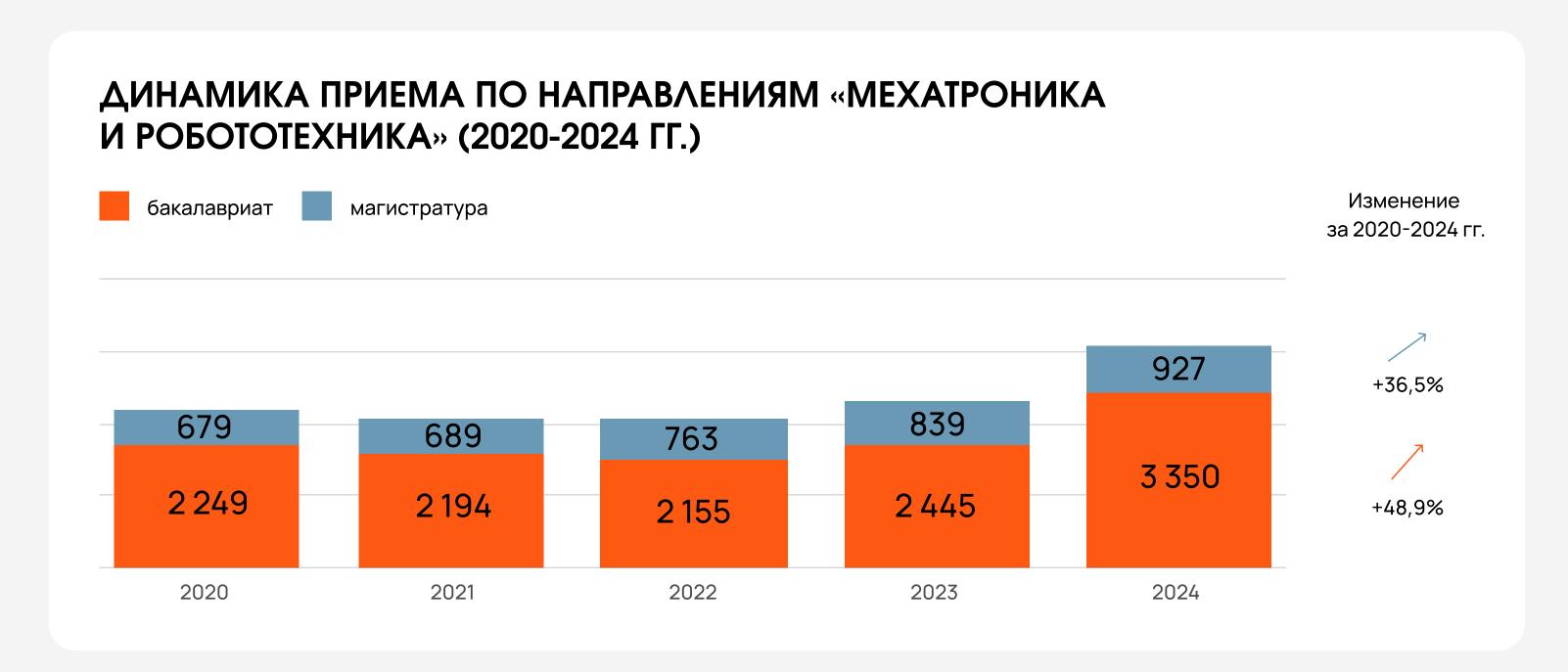
Прогнозные оценки указывают на усугубление ситуации: к 2030 году потребность в специалистах по искусственному интеллекту в промышленности может достичь 2–3 миллионов человек. Данный тренд создает двойную нагрузку на кадровую систему: необходимость покрытия текущего дефицита и подготовка новых специалистов для цифровой трансформации производства.

Автоматизация производственных процессов рассматривается как механизм компенсации недостатка рабочей силы.

География размещения вакансий демонстрирует высокую концентрацию: более 65% предложений сосредоточены в Москве, Московской области и Санкт-Петербурге. Среди регионов отмечается активность Республики Татарстан, Свердловской и Самарской областей. Ведущими работодателями выступают промышленные холдинги, ІТ-компании, научно-исследовательские центры и образовательные учреждения.

26

Источник: НАУРР, Университет Иннополис


# КАДРЫ

По данным Минобрнауки России, в 2024 году в России совокупно было выпущено 827 554 специалиста высшей категории всех направлений подготовки, среди которых доля бакалавров составляет 63,76 %.

Количество выпускников, получивших высшее образование в области инженерного дела, технологий и технических наук, составило 28,9% от общего числа выпускников.

Российская система высшего образования в области робототехники представляет собой структуру подготовки специалистов, включающую бакалавриат и магистратуру по направлению «Мехатроника и робототехника» (15.03.06 и 15.04.06). По состоянию на август 2025 года данные направления реализуются в 93 высших учебных заведениях страны (государственных и негосударственных), из них в 87 представлены программы бакалавриата и в 50 программы магистратуры.

За пятилетний период по направлениям 15.03.06 и 15.04.06 общий прием студентов увеличился на 46,1%. Наибольший рост приема зафиксирован



в 2024 году и составил 30,2%. Количество студентов в бакалавриате за пять лет возросло на 48,9%, при этом в 2021 и 2022 годах наблюдалось снижение числа поступивших на направление 15.03.06.

Прием в магистратуру характеризовался стабильным ростом, за исключением 2021 года, когда увеличение составило 1,5%. В остальные годы рассматриваемого периода прием в магистратуру стабильно увеличивался на 10% ежегодно.

Структура подготовки кадров ориентирована на решение двух стратегических задач: обеспечение текущих потребностей промышленности в квалифицированных специалистах и формирование долгосрочного кадрового потенциала отрасли. Высокие темпы промышленной роботизации требуют значительного увеличения числа квалифицированных специалистов, способных проектировать и эксплуатировать роботов.

# КАДРЫ

Территориальное распределение 93 вузов, реализующих программы робототехники, демонстрирует значительную концентрацию в экономически развитых регионах. В центральном ФО располагаются 30,1% всех образовательных учреждений (28 вузов), которые обучают по направлениям 15.03.06 и 15.04.06.

Приволжский ФО занимает вторую позицию с 20,4% вузов (19 учреждений), что обусловлено развитым машиностроительным комплексом региона и традиционно сильными техническими школами Казани, Нижнего Новгорода, Самары. Стоит выделить Дальневосточный и Северо-Кавказский, где на весь федеральный округ приходится лишь по 5 и 2 вуза соответственно.



# ГОСУДАРСТВЕННЫЕ МЕРЫ ПОДДЕРЖКИ РОБОТИЗАЦИИ ПРОМЫШЛЕННОСТИ

Федеральный проект «Развитие промышленной робототехники и автоматизации производства» с периодом действия с 2025 по 2030 год был опубликован 18 июля 2024 года совместно с анонсом национального проекта «Средства производства и автоматизации» с периодом действия с 2025 по 2030 год, в рамках которого он реализуется. Проект предусматривает поддержку отрасли посредством нормативно-правовых, финансовых и технологических инструментов.

Основу проекта формируют Указ Президента Российской Федерации № 309 от 7 мая 2024 года «О национальных целях развития Российской Федерации на период до 2030 года», постановления Правительства и государственные программы, включая «Научно-технологическое развитие Российской Федерации», утвержденную 29 марта 2019 года с периодом действия с 2019 по 2030 год и «Развитие промышленности и повышение ее конкурентоспособности», утвержденную 15 апреля 2014 года с периодом действия с 2014 по 2030 год.

Национальный проект ориентирован на достижение следующих показателей к 2030 году:

- Обеспечение технологической независимости Российской Федерации в производстве средств производства – 95%.
- Прирост объема производства станкоинструментальной продукции для нужд различных отраслей промышленности Российской Федерации по отношению к 2022 году – 103%.
- Плотность роботизации 145 единиц на 10 000 человек.
- Доля выпускников, трудоустроившихся в организации сферы производства средств производства и автоматизации по результатам прохождения обучения по разработанным или актуализированным основным образовательным программам высшего образования в интересах организаций сферы производства средств производства и автоматизации 90%.
- Уровень профессионально-квалификационной обеспеченности организаций сферы производства средств производства и автоматизации 90%.

Мониторинг и обеспечение прозрачности получения мер поддержки осуществляются с использованием платформы Государственной информационной системы промышленности (ГИСП). Навигатор мер поддержки в рамках ГИСП предоставляет единый доступ к ресурсам, подачу заявок и сбор более 230 федеральных и 2100 региональных мер поддержки для промышленного сектора.

В Российской Федерации администраторами мер поддержки являются государственные органы, корпорации, фонды и иные уполномоченные организации, которые реализуют конкретные меры государственной поддержки в соответствии с нормативными правовыми актами. Эти меры включают разные финансовые инструменты: гранты, субсидии, льготное кредитование, гарантийные обязательства и займы, направленные на поддержку технологических инноваций и внедрение роботизированных решений в производственный процесс.

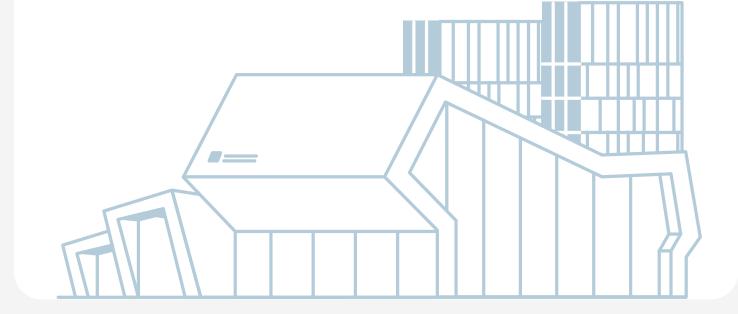
# ГОСУДАРСТВЕННЫЕ МЕРЫ ПОДДЕРЖКИ РОБОТИЗАЦИИ ПРОМЫШЛЕННОСТИ

| Администратор                                                                                  | Типы мер                                   | Описание                                                                                                                                                                                                                                                                                  | Примеры                                                                                                                                                                                                                                       |
|------------------------------------------------------------------------------------------------|--------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Государственная корпорация развития «ВЭБ.РФ»                                                   | Льготное кредитование, Гарантии            | Государственная корпорация развития, которая предоставляет финансирование для крупных инфраструктурных и промышленных проектов, включая льготные кредиты и инвестиции в инновационные технологии. Она фокусируется на поддержке экспорта, импортозамещения и технологической модернизации | Фабрика проектного финансирования ВЭБ.РФ                                                                                                                                                                                                      |
| АО «МСП Банк»                                                                                  | Льготное кредитование, Гарантии            | Банк, специализирующийся на поддержке малого и среднего предпринимательства (МСП), предлагает кредиты, гарантии и лизинг для бизнеса, включая программы по автоматизации и цифровизации производства                                                                                      | <ul> <li>Кредитный продукт «Инвестиционное кредитование»</li> <li>Инвестиционный кредит на строительство, ремонт, приобретение основных средств для бизнеса: недвижимости, транспорта, оборудования</li> </ul>                                |
| АО «Корпорация «МСП»  федеральная корпорация по развитию малого и среднего предпринимательства | Льготный лизинг, Льготное<br>кредитование  | Федеральная корпорация развития малого и среднего предпринимательства, которая координирует меры поддержки для МСП, такие как гранты, субсидии и консультации, с акцентом на инновации и технологическое развитие                                                                         | <ul> <li>Программа стимулирования кредитования субъектов МСП и Программа 1764</li> <li>Целевое использование финансовых средств - Закупка оборудования, капитальный ремонт производственных помещений или запуск новых производств</li> </ul> |
| Минпромторг России                                                                             | Возмещение затрат,<br>Предоставление займа | Министерство, ответственное за промышленную политику, предоставляет субсидии, гранты и регуляторную поддержку для отраслей, включая робототехнику и автоматизацию, через федеральные и региональные программы.                                                                            | Субсидии на финансовое обеспечение части затрат на разработку и организацию производства новых видов продукции, а также модернизацию линейки выпускаемой продукции                                                                            |
| Фонд развития промышленности  фонд Развития Промышленности                                     | Предоставление займа                       | Организация, финансирующая проекты по модернизации производства, предлагая займы на льготных условиях для                                                                                                                                                                                 | Программа ФРП «Комплектующие изделия»                                                                                                                                                                                                         |
| Фонд содействия инновациям Фонд содействия И Н Н О В А Ц И Я М                                 | Грант                                      | Фонд, ориентированный на поддержку инновационных проектов, предоставляет гранты для стартапов и компаний, занимающихся разработкой технологий, включая робототехнику и автоматизацию.                                                                                                     | Грантовая программа ФСИ «Развитие» направлена на поддержку малых инновационных предприятий (МИП), уже имеющих опыт разработки и продаж собственной наукоемкой продукции и планирующих разработку и освоение новых видов продукции             |

# СЕТЬ ЦЕНТРОВ РАЗВИТИЯ ПРОМЫШЛЕННОЙ РОБОТОТЕХНИКИ В РОССИИ

В России создается разветвленная сеть Центров развития промышленной робототехники (далее — ЦРПР), призванная ускорить роботизацию предприятий и внедрение передовых технологий в промышленном секторе. Ядром этой системы выступает федеральный Центр, организованный в 2024 году на базе Университета Иннополис. Он выполняет функции головного координатора и методического центра для всей сети, обеспечивая согласованную работу региональных подразделений — центров-спутников, расположенных в различных федеральных округах.

Центры-спутники обеспечивают предприятия в регионах доступом к необходимой инфраструктуре и экспертизе. Их ключевые задачи — продвижение идей роботизации, проведение техникотехнологических аудитов, поддержка инновационных проектов, а также реализация образовательных программ для подготовки специалистов. Каждое региональное подразделение фокусируется на специфических направлениях работы, что позволяет охватить широкий спектр отраслей и технологических ниш.


Взаимодействие головного ЦРПР и центров спутников осуществляется на основе ключевых принципов:

- применение всеми звеньями сети ЦРПР единых стандартов и методологии;
- оперативный обмен опытом и накопленными знаниями;

- взаимная поддержка;
- обращение к единой базе данных.

### Цели головного ЦРПР

- формирование эталонной модели ЦРПР;
- обеспечение технологического лидерства;
- развитие партнерств, включая международных.



### Цели центров-спутников

- развитие рынка робототехники, включающего количественные и качественные показатели как в регионе присутствия центра-спутника, так и в других регионах, например:
- увеличение числа пользователей роботизированных комплексов;
- создание новых рабочих мест;
- повышение производительности предприятий;
- развитие инновационной деятельности.

# СЕТЬ ЦЕНТРОВ РАЗВИТИЯ ПРОМЫШЛЕННОЙ РОБОТОТЕХНИКИ В РОССИИ

Роль головного ЦРПР в части развития сети сводится к организации и координации процессов отбора участников рынка промышленной робототехники для присвоения статуса центраспутника, развитию и координации деятельности сети, а также поддержки путем реализации функции Центра экспертизы, методологии и лучших практик. Центры-спутники, в свою очередь, реализуют функцию региональных провайдеров по адаптации и внедрению передовых робототехнических решений на предприятиях, участвуют в процессах обучения и повышении квалификации специалистов, формируют аналитику о потребностях рынка и иные направления деятельности, связанные с развитием региональной сети.

В 2024 году головным центром был осуществлен первый отбор в рамках задачи по формированию сети центров-спутников и выбран первый центр-спутник — компания ООО «Промобот».

С учетом завершения третьего отбора, до конца 2025 года к существующей сети из 6 участников должны добавиться еще две компании.

### ЭТАПЫ РАЗВИТИЯ СЕТИ ЦРПР

### 2024

- Создание головного ЦРПР на базе Университета Иннополис
- Первый конкурсный отбор
  пополнение региональной сети ЦРПР новым
  участником



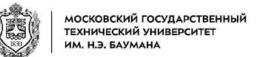
# РЕГИОНЫ ПРИСУТСТВИЯ:

Республика Татарстан

Пермский край

### 2025

# Второй конкурсный отбор


пополнение региональной сети ЦРПР новыми участниками







Южно-Уральский государственный университет



### Третий конкурсный отбор

На данный момент не завершен. До конца 2025 года планиурется пополнить сеть центров-спутников еще двумя участниками.

# • РЕГИОНЫ ПРИСУТСТВИЯ:

- г. Санкт-Петербург
- г. Москва

Нижегородская область

Челябинская область

# РЕЗУЛЬТАТЫ ОПРОСА

В рамках исследования, проведенного в период с июня по август 2025 года, был осуществлен сбор и анализ данных от компаний, представляющих рынок промышленной робототехники.

Респонденты были классифицированы по четырем категориям: производители роботов, интеграторы, производители компонентов, а также вузы и научные центры. Дополнительным источником информации послужили обезличенные материалы, предоставленные компаниями-участниками конкурсного отбора на создание Центров развития промышленной робототехники, который проводился на базе АНО ВО «Университет Иннополис».

Всего в исследовании были проанализированы данные 71 компании. Распределение респондентов по категориям имеет следующую структуру: интеграторы — 44%, научные и образовательные центры — 32%, производители компонентов — 15%, производители роботов — 9%.

# ДЕФИЦИТ ИНЖЕНЕРНЫХ КАДРОВ, % 43 Автоматизатор 41 Конструктор 35 Электронщик 31 Программист 26 Схемотехник Сервисный инженер 26 20 Технолог 18 Механик 10 Исследователь Другое 10

Источник: Университет Иннополис

# УДОВЛЕТВОРЕННОСТЬ КОМПАНИЙ УРОВНЕМ ПОДГОТОВКИ ВЫПУСКНИКОВ ВУЗОВ, % Удовлетворены частично 53 В целом удовлетворены 26 Скорее не удовлетворены 13 Полностью удовлетворены 6 Совсем не удовлетворены 2

| 1-5 САМЫХ ВОСТРЕБОВАННЫХ НАПРАВЛЕНИЙ ДПО             |                  |
|------------------------------------------------------|------------------|
| равление обучения                                    | Доля компаний, % |
| оботизация технологических процессов и производств   | 35               |
| Ірограммирование промышленного робота                | 31               |
| Сервисное обслуживание промышленных роботов          | 25               |
| ффективное управление роботизированным производством | 22               |
| основы робототехники                                 | 16               |
|                                                      |                  |

| ТОП-5 ОТРАСЛЕЙ НА КОТОРЫХ СПЕЦИАЛИЗИРУЮТСЯ КОМПАНИИ |    |
|-----------------------------------------------------|----|
| Машиностроение и металлообработка                   | 55 |
| Автомобильная промышленность                        | 33 |
| Судостроение                                        | 29 |
| Пищевая промышленность                              | 28 |
| Военно-промышленный комплекс                        | 26 |
|                                                     |    |

| ТОП-5 РОБОТИЗИРУЕМЫХ ПРОЦЕССОВ, %                  |    |
|----------------------------------------------------|----|
| Сварка                                             | 37 |
| Паллетирование                                     | 37 |
| Обслуживание станков                               | 36 |
| Маркировка                                         | 36 |
| Нанесение клея / обработка поверхностей / упаковка | 26 |
|                                                    |    |

34

Источник: Университет Иннополис

# КЛЮЧЕВЫЕ ВЫВОДЫ

Мировой рынок промышленной робототехники демонстрирует устойчивый рост: с 16,5 млрд долларов в 2024 г. при совокупном среднегодовом темпе роста (CAGR) 11,5% в период 2025–2034 гг.

2

Из 5 стран-лидеров по плотности роботизации 4 относятся к Азиатско-Тихоокеанскому региону: Республика Корея (1 012 роботов на 10 тысяч работников), Сингапур (770), Китай (470), Германия (429) и Япония (419). На Азиатско-Тихоокеанский регион приходится более 65% объема мирового рынка промышленной робототехники.

3

Технологическое развитие отрасли определяется несколькими основными взаимосвязанными трендами:

- Интеграция искусственного интеллекта и компьютерного зрения в промышленную робототехнику
- Бурный рост рынка коллаборативных роботов (до примерно 71,26 млрд долларов к 2034 году при CAGR 32,7%)
- Развитие энергоэффективных решений и бизнес-моделей «робототехника как услуга» (RaaS)
- Активное внедрение автономных мобильных роботов (AMR) в логистике
- Конвергенция с экосистемами Интернета вещей (IIoT/IoRT) и периферийными вычислениями

4

Российский рынок находится на этапе активного формирования. При росте парка промышленных роботов на 62% за год до более чем 20 000 ед.) плотность роботизации (~29 ед. на 10 тыс. работников в 2024 г.) существенно отстает не только от мировых лидеров, но и от целевого показателя в 145 ед. к 2030 г., установленного Национальным проектом «Средства производства и автоматизации».

5

В России сформирована начальная экосистема участников, включающая около 20 отечественных производителей и более 150 интеграторов. Ключевой вопрос заключается в способности отечественных производителей обеспечить существенную долю в запланированном расширении парка промышленных роботов.

5

Для достижения национальной цели потребуется нарастить парк роботов как минимум 104 тысячи единиц к 2030 году. При сохранении текущей численности занятых в промышленности это потребует ежегодного внедрения в среднем по 13,7 тыс. единиц, что создает значительный потенциал для роста рынка.

/

Главными вызовами для отрасли остаются зависимость от импорта критических компонентов (редукторы, сервоприводы), недостаток инженерных специалистов, отсутствие единых отраслевых стандартов и сложности с масштабированием производства.

# РЕКОМЕНДАЦИИ ПО РАЗВИТИЮ ОТРАСЛИ



# ПОВЫШЕНИЕ УРОВНЯ ЛОКАЛИЗАЦИИ ПРОИЗВОДСТВА ПРОМЫШЛЕННЫХ РОБОТОВ И РАЗВИТИЕ ОТЕЧЕСТВЕННОЙ КОМПОНЕНТНОЙ БАЗЫ

Создание совместных научно-производственных кластеров с вузами и НИИ для разработки и организации серийного производства критических компонентов роботов: сервоприводы, волновые редукторы и т.п.

Расширение мер поддержки использования отечественных комплектующих в рамках госзакупок и программ импортозамещения.



# РАЗВИТИЕ КАДРОВОГО ПОТЕНЦИАЛА И ОБРАЗОВАТЕЛЬНЫХ ПРОГРАММ

Внедрение специализированных учебных траекторий по программированию, интеграции и обслуживанию робототехнических комплексов на базе национальных центров компетенций.

Стимулирование корпоративных программ обучения и стажировок на площадках ведущих производителей и интеграторов.



# РАЗРАБОТКА И ВНЕДРЕНИЕ ЕДИНЫХ ОТРАСЛЕВЫХ СТАНДАРТОВ

Формирование системы национальных стандартов и требований к безопасности и энергоэффективности промышленных роботов.

Интеграция разработанных стандартов в процедуры обязатель-ной сертификации и оценки соответствия.



# СТИМУЛИРОВАНИЕ СПРОСА И СНИЖЕНИЕ БАРЬЕРОВ ДЛЯ ВНЕДРЕНИЯ

Реализация пилотных проектов для апробации моделей RaaS и AMR с целью снижения финансовых и технологических барьеров внедрения робототехники на предприятиях малого и среднего бизнеса.

Формирование комплексной системы финансовых стимулов, включающей меры поддержки внедрения робототехники.

Разработка унифицированных методик оценки экономической эффективности внедрения робосистем.



# УСИЛЕНИЕ РОЛИ ГОСУДАРСТВЕННО-ЧАСТНОГО ПАРТНЕРСТВА И ПОДДЕРЖКИ НИОКР

Концентрация усилий и финансирования в рамках фондов развития на перспективных направлениях: коллаборативная и гуманоидная робототехника, цифровые двойники, периферийные вычисления, ИИ в робототехнике и другие.

Организация открытых конкурсов и грантовой поддержки для разработки прорывных технологий и их коммерциализации.



# ОПРЕДЕЛЕНИЕ И ПОДДЕРЖКА ОТРАСЛЕЙ-ЛОКОМОТИВОВ

Проведение анализа и выявление отраслей обрабатывающей промышленности с наибольшим потенциалом для роботизации.

Разработка и реализация целевых программ поддержки внедрения роботов в этих отраслях для обеспечения масштабного и устойчивого роста парка.

# РЕКОМЕНДАЦИИ ПО РАЗВИТИЮ ОТРАСЛИ



# ИЗУЧЕНИЕ И АДАПТАЦИЯ МЕЖДУНАРОДНОГО ОПЫТА

Проанализировать стратегии развития робототехники в странах-лидерах, включая модели государственной поддержки и отраслевого регулирования.

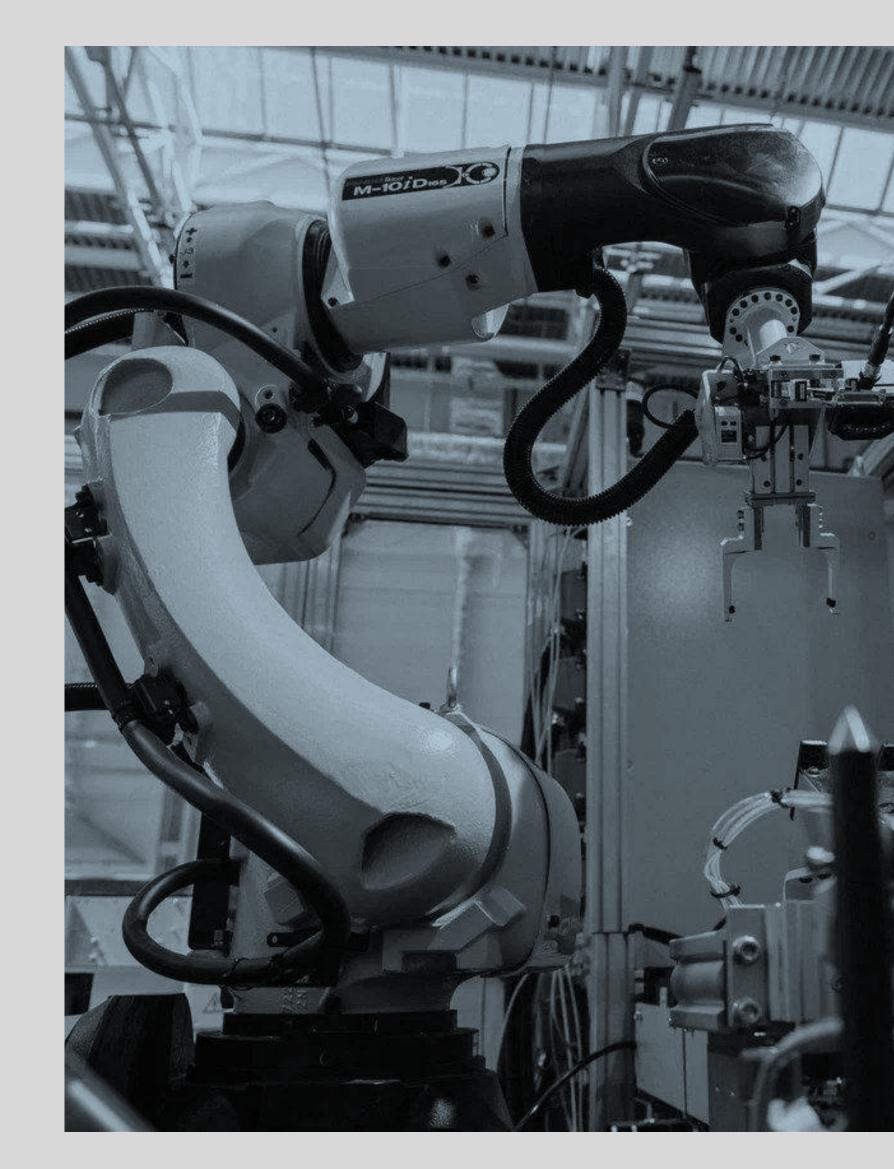
Установить партнерские отношения с ведущими зарубежными аналитическими центрами для обмена опытом в области отраслевой статистики, стандартизации и подготовки кадров.

Внедрить систему мониторинга глобальных технологических трендов для формирования сбалансированной научно-технической политики.

Использовать международные методики анализа рынка и цепочек создания стоимости для выявления перспективных ниш для российских производителей.



# РАЗРАБОТКА СТРАТЕГИИ РАЗВИТИЯ РОБОТОТЕХНИКИ В РОССИИ


Рассмотреть возможность разработки единого национального стратегического документа по развитию робототехники (стратегия роботизации), в котором определены приоритетные отрасли, целевые показатели плотности автоматизации и ключевые инструменты поддержки, и параллельно сформировать региональные стратегии, учитывающие профильные кластеры, уровень текущей автоматизации и потенциал локальных производств



# ПОВЫШЕНИЕ ОСВЕДОМЛЕННОСТИ И АДАПТАЦИЯ ИНСТРУМЕНТОВ ПОДДЕРЖКИ

Проведение информационно-разъяснительной работы для повышения уровня знаний промышленных предприятий о существующих мерах поддержки, включая организацию вебинаров и размещение адаптированной информации (инфографики) в социальных сетях.

Оптимизация платформы ГИСП через введение в поисковый параметр «Проблемы предприятия» новой категории «Необходимость в автоматизации производства» для упрощения навигации.













ROBOTICS-CENTER.RU



VK.COM/PROM\_ROBOTICS



T.ME/PROM\_ROBOTICS

