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e Artem Babenko, Research Lead @ Yandex Research
e Publications on deep/machine learning for tabular data by Yandex Research
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(NeurlPS 2018) CatBoost: unbiased boosting with categorical features

(ICLR 2020) Neural Oblivious Decision Ensembles for Deep Learning on Tabular Data
(NeurlPS 2021) Revisiting Deep Learning Models for Tabular Data

(NeurlPS 2022) On Embeddings for Numerical Features in Tabular Deep Learning
(arXiv 2022) Revisiting Pretraining Objectives for Tabular Deep Learning

(ICML 2023) TabDDPM: Modelling Tabular Data with Diffusion Models

(ICLR 2024) TabR: Tabular Deep Learning Meets Nearest Neighbors

(2024) Several projects under submission

e Tabular DL projects by Yandex Research: github.com/yandex-research/rtd|
(RTDL = Research on Tabular Deep Learning)



http://github.com/yandex-research/rtdl

YR Tabular DL team

=

Artem Babenko Yura Gorishniy Nikolay Kartashev Akim Kotelnikov Ivan Rubachev
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Tabular data

Tabular data — two-dimensional tables
® rows ~ objects
e columns ~ features

Today we focus on
e supervised regression
e supervised classification

Applications
e everyday tasks...
e ...and many others
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Metrics

Metrics are used to evaluate how well predictions approximate labels.
Example: Root Mean Squared Error (RMSE)
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Dataset splitting

Train
(Training)

Validation
(Hyperparameter tuning & Early stopping)

Test

(Final evaluation)




Data preprocessing

Continuous features
e QuantileTransformer
e QuantileTransformer with noise (example)
e StandardScaler
e Missing data: x — (0, 1) if x is NaN else (x, 0)

Categorical features
e One-hot encoding
(typically used when the number of distinct
values is not too high)
e Embeddings
e Missing data: make NaN a new category

Binary features
e Just encode as {0, 1}
e Missing data: any reasonable
strategy (see “Continuous”
and “Categorical’)

Ordinal features
e OrdinalEncoder
e Thermometer encoding
e Cumulative embeddings

P.S. Standardize regression labels


https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.QuantileTransformer.html
https://github.com/yandex-research/rtdl-num-embeddings/blob/main/package/example.ipynb
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.OrdinalEncoder.html

Specifics of Tabular ML problems

e Limited dataset sizes

e Heterogeneous and mixed-type features

e Each problem has its own nature

e Target dependencies are often “ill-behaved”
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Classic machine learning algorithms

K-Nearest neighbors

Linear model (Linear regression, Logistic regression, ...)
Support vector machine (SVM)

Decision tree

Random forest

Gradient-boosted decision tree (GBDT)



Gradient Boosting Decision Trees (GBDT)
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GBDT Is a strong baseline for Tabular ML

e [Efficient
e Easy-to-use
e [Effective

Wins Ties Losses

(2020) | 14% 21% 65 %

(2021) 16 % 40 % 44 %

(2022) 26 % 35% 40%

(2023) 53 % 30% 16 %

Best DL model vs XGBoost on the academic benchmark of ~40 datasets
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Chaos in Tabular DL before 2021

Differentiable trees Specific activation functions

e NODE (Popov et al., 2020) e SNN (Klambauer et al., 2017)
“Attention”-based models Boosting-like models

e Autolnt (Song et al., 2019) e GrowNet (Badirli et al., 2020)

e TabNet (Arik and Pfister, 2020)
And many others
Multiplicative feature interactions °
e DCN2 (Wang et al., 2020)



2021: Are we really making progress in Tabular DL? [1,2,3]

e Tuning protocols and evaluation are often unfair
e GBDT is still superior to DL
e Sophisticated DL models are often inferior to simple ones

[1] Revisiting Deep Learning Models for Tabular Data, Gorishniy et al., 2021
[2] Tabular Data: Deep Learning is not all you need, Schwartz-Ziv et al., 2021

[3] Regularization is all you need: simple neural nets can excel on tabular data, Kadra et al., 2021
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MLP

Simple and fast
Average performance

Linear

—

RelU

-

Dropout

O

One MLP block



ResNet for Tabular Data

Inspired by ResNet (He at al., 2015)
Quite simple and relatively fast
Hopefully, more powerful than MLP

In

BN

Skip Connection

BN

BatchNorm L Linear

RelLU D Dropout

One ResNet block

Add




FT-Transformer (Ours)

e Based on Transformer (Vaswani et al., 2017)
e Slower than ResNet
e Hopefully, more powerful than MLP and ResNet

To T; Yy
T T fcLs] [cis) |- Predict —e{ ]

Feature
Tokenizer = =+ Transformer =

FT-Transformer




FT-Transformer (Ours)
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Experiments



Experiments: datasets and protocol

Dataset| N K Metric e Tuning
California Housing| 21K | 8 RMSE o mostly Optuna (Akiba et al., 2019)
Adult] 49K | 14 | Accuracy (B) (50-100 iterations)
Helena) 66K | 27 | Accuracy (M) o grid search from original papers

Jannis| 84K | 54 | Accuracy (M)
Higgs (small)| 99K | 28 | Accuracy (B)
ALOI| 108K | 128 | Accuracy (M)
Epsilon| 500K | 2000 | Accuracy (B)
Year| 516K | 90 RMSE
Covtype| 582K | 54 | Accuracy (M)
Yahoo| 710K | 699 RMSE
Microsoft| 1201K| 136 RMSE

e Evaluation
o 15 random seeds
o ensembles: three ensembles
(each consists of five single models)

e No DL tricks
© no augmentation

N ~ dataset size B ~ binary o nolr schgd_ullng
K ~ number of features M ~ multiclass O no pretraining
o efc.



Experiments: Neural Networks

Model| Average rank (std)

Takeaways
TabNet 7.5(2.0) e MLP is still a good sanity check
SNN 6.4 (1.4) e ResNet is a strong baseline
Autolnt 5.7(2.3) e FT-Transformer outperforms existing solutions
GrowNet 5.7 (2.2 on most of the tasks
MLP 4.8 (1.9) e Tuning matters

DCN V2 4.7 (2.0)

NODE 3.9(2.8)

ResNet 3.3(1.8)
FT-Transformer 1.8(1.2)




Experiments: FT-Transformer vs GBDT

(ensembles)

Dataset

cA

AD K3

HE K3

JA D

HI [l

AL K3

EP K

YE [}

co il

YA

#objects

20K

49K

65K

84K

98K

108K

500K

515K

581K

710K

1200K

XGBoost (d)

0.462

0.874

0.348

0.711

0.717

0.924

0.88

9.192

0.964

0.761

0.751

CatBoost (d)

0.428

0.873

0.386

0.724

0.728

0.948

0.889

8.885

0.91

0.749

0.744

FT-Transformer (d)

0.454

0.86

0.395

0.734

0.731

0.966

0.897

8.727

0.973

0.747

0.742

FT-Transformer*

0.448

0.86

0.398

0.739

0.731

0.967

0.898

8.751

0.973

0.747

0.743

(d) ~ default configuration

Takeaways

*out of competition

Bl Accuracy RMSE

e ensemble of default FT-Transformers is a powerful thing

Best




Experiments: ResNet & FT-Transformer vs GBDT
(ensembles)

Dataset| CAJ[M|ADEB |HEE | JAH | HIED (ALl (EPE | YEl |[coOl| YAl | vi B

#objects| 20K | 49K | 65K | 84K | 98K | 108K | 500K | 515K | 581K | 710K | 1200K
XGBoost 0.431 | 0.872 | 0.377 | 0.724 | 0.728 - 0.886 | 8.819 | 0.969 | 0.732 | 0.742
CatBoost 0.423 | 0.874 | 0.388 | 0.727 | 0.729 - 0.89 | 8.837 | 0968 | 0.74 | 0.741
ResNet 0478 | 0.857 | 0.398 | 0.734 | 0.731 | 0.966 | 0.898 | 8.77 | 0.967 | 0.751 | 0.745
FT-Transformer | 0.448 | 0.86 | 0.398 | 0.739 | 0.731 | 0.967 | 0.898 | 8.751 | 0.973 | 0.747 | 0.743

Takeaways

(1] Accuracy RMSE
Best

e ‘DL vs GBDT” is an open problem
e FT-Transformer reduces the gap

between ResNet and GBDT




An intriguing property of FT-Transformer
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Conclusion

MLP and ResNet
o fast and strong baselines

FT-Transformer
o slower
o canyield even better performance

FT-Transformer is a more universal architecture for
Tabular Data

Python package with the new models:
pip install rtdl

Source code:
https://aithub.com/yandex-research/rtdl



https://github.com/yandex-research/rtdl
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How can we improve FT-Transformer?
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(2022) On Embeddings for Numerical Features in Tabular Deep Learning



How can we improve FT-Transformer?
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(2022) On Embeddings for Numerical Features in Tabular Deep Learning



But wait...

]
X T [cLs] [cLS] =+ Predict == |

Feature
- —_ *
"[Tokeulzer Transformer

What if we combine this with MLP?

(2022) On Embeddings for Numerical Features in Tabular Deep Learning



Moreover...

e Transformers perform well
o The only model with embeddings for numerical features

(2022) On Embeddings for Numerical Features in Tabular Deep Learning



Moreover...

e Transformers perform well
o The only model with embeddings for numerical features
e GBDTs process numerical features via thresholds
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Moreover...

e Transformers perform well
o The only model with embeddings for numerical features
e GBDTs process numerical features via thresholds
e MLP is a universal approximator in theory...
e ... but notin practice. Though, changing the input space can help
o “Fourier Features Let Networks Learn High Frequency Functions
in Low Dimensional Domains” (Matthew Tancik et al., 2020)
o “NeRF: Representing Scenes as Neural Radiance Fields for View
Synthesis” (Ben Mildenhall et al., 2020)

(2022) On Embeddings for Numerical Features in Tabular Deep Learning



Input representation matters

Fourier Features Let Networks Learn
High Frequency Functions in Low
Dimensional Domains (Tancik et al.,
NeurlPS 2020)

The original image

!
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Moreover...

e Transformers perform well
o The only model with embeddings for numerical features
e GBDTs process numerical features via thresholds
e MLP is a universal approximator in theory...
e ... but notin practice. Though, changing the input space can help
o “Fourier Features Let Networks Learn High Frequency Functions
in Low Dimensional Domains” (Matthew Tancik et al., 2020)
o “NeRF: Representing Scenes as Neural Radiance Fields for View
Synthesis” (Ben Mildenhall et al., 2020)
e Little work on numerical features processing

(2022) On Embeddings for Numerical Features in Tabular Deep Learning



Questions

e Can we improve the way numerical features are processed?
e Can MLP-like models benefit from embeddings for numerical features?

(2022) On Embeddings for Numerical Features in Tabular Deep Learning



MLP with embeddings

Without embeddings With embeddings

(2022) On Embeddings for Numerical Features in Tabular Deep Learning



Piecewise-linear encoding

PLE(:.::):[ T ]

(2022) On Embeddings for Numerical Features in Tabular Deep Learning



Piecewise-linear encoding

r—b
PLE(:.::):[ 1 1 53_;2 0 ]

For Transformer-based models:
e Ut - the embedding of the t-th bin
T
filx) = vy + ZE* vy = Linear (PLE (x))
t=1 (2022) On Embeddings for Numerical Features in Tabular Deep Learning



Piecewise-linear encoding

Quantile binning

bt — Q% ({mi(num) }jEJtra?Ln)

(2022) On Embeddings for Numerical Features in Tabular Deep Learning



Piecewise-linear encoding

Quantile binning Target-aware binning

bt — Q% ({mi(num) }jEJtrain)

(2022) On Embeddings for Numerical Features in Tabular Deep Learning



Periodic activation functions

e (this approach is unrelated to PLE)
e Inspired by the success of periodic functions in other fields

fi(x) = Periodic(z) = concat[sin(v), cos(v)]

v=2rc1z, ..., 2WCkT]

(2022) On Embeddings for Numerical Features in Tabular Deep Learning



Other approaches

e Stacking “conventional’ layers (linear, ReLU, SoftMax, ...)
e Stacking “conventional’ layers on top of PLE or Periodic

(2022) On Embeddings for Numerical Features in Tabular Deep Learning



Model names

Embedding name
L

LR

Q-LR

T-LR

PLR

Embedding function f_i
Linear(x)
ReLU(Linear(x))
ReLU(Linear(PLE(x)))
ReLU(Linear(PLE(x)))

ReLU(Linear(Periodic(x)))

Model name = <Backbone-Embedding>

Examples:

e Transformer-L (== FT-Transformer)

e MLP-PLR

Comment

guantile-based PLE
target-based PLE

The “LR” addition is more
important, than for PLE

(2022) On Embeddings for Numerical Features in Tabular Deep Learning



Experiments: datasets and protocol

Dataset| N K Metric
Gesture| 10K | 32 | Accuracy (M)
Churn modelling| 10K | 11 | Accuracy (B)
Eye movements| 11K | 26 | Accuracy (M)
California Housing| 21K 8 RMSE
House pricing| 23K | 16 RMSE
Adult income| 49K | 14 | Accuracy (B)
Otto products| 62K | 93 | Accuracy (M)
Higgs (small)| 98K | 28 | Accuracy (B)
FB comments| 197K | 51 RMSE
Santander| 200K | 200 | Accuracy (M)
Covertype| 581K | 54 | Accuracy (M)
Microsoft| 1201K| 136 RMSE
N ~ dataset size B ~ binary

K ~ number of features

e Tuning
o mostly Optuna (Akiba et al., 2019)
(50-100 iterations)

e FEvaluation
o 15 random seeds
o ensembles: three ensembles
(each consists of five single models)

e No DL tricks
© no augmentation
o no Ir scheduling
O no pretraining
o eftc.

M~ m“'“%?Z) On Embeddings for Numerical Features in Tabular Deep Learning



Experiments: results

Model| Average rank (std.)
CatBoost 6.8 (4.9)
XGBoost 9.0 (5.7)
MLP 15.6 (2.4)
MLP-LR 10.2 (4.4)
MLP-Q-LR 10.7 (4.6)
MLP-T-LR 10.3 (3.8)
MLP-PLR 4.9 (4.8)
Transformer-L 10.6 (3.3)
Transformer-LR 9.4(4.1)
Transformer-Q-LR 8.5(5.5)
Transformer-T-LR 7.2 (4.6)
Transformer-PLR 6.0 (4.5)

The benchmark is biased towards GBDT-friendly
problems
MLP-LR is consistently better than MLP

(2022) On Embeddings for Numerical Features in Tabular Deep Learning



Experiments: results

Model| Average rank (std.)
CatBoost 6.8 (4.9)
XGBoost 9.0(5.7)
MLP 15.6 (2.4)
MLP-LR 10.2 (4.4)
MLP-Q-LR 10.7 (4.6)
MLP-T-LR 10.3 (3.8)
MLP-PLR 4.9 (4.8)
Transformer-L 10.6 (3.3)
Transformer-LR 9.4(4.1)
Transformer-Q-LR 8.5(5.5)
Transformer-T-LR 7.2 (4.6)
Transformer-PLR 6.0 (4.5)

e The benchmark is biased towards GBDT-friendly
problems
e MLP-LR is consistently better than MLP

Embeddings for numerical features:
e can provide significant boost
e are applicable to MLP-like models
o See MLP vs MLP-PLR!
e allow MLP-like models to compete with
Transformer

(2022) On Embeddings for Numerical Features in Tabular Deep Learning



Conclusion

e Backbones
o MLP is a great backbone for researchers and practitioners
o ResNet may (or may not) provide an extra bit of performance
o Transformers are competitive, but slow (unclear if it is worth it)
e Embeddings for numerical features
o can provide significant performance boost
o Linear + RelU
m low risk & low reward
o Periodic + Linear + RelU
m tune sigma: [0.01, 0.02, 0.05, 0.1, 0.5, 1.0, ...]
m for other hyperparameters, take inspiration from the official repository
o PLE-based solutions can also provide good performance
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Retrieval-Augmented Learning

e Is originally motivated by the local learning paradigm (Vapnik et al. 1992)
e Demonstrates success in NLP and computer vision tasks

e Provides higher interpretability and robustness



TabR

input o~ ~
object * a % Y
:: Predictor
]
'
Encoder candidate { }
(shared) labels \Yi
b Retrieval module Information flow
' >
1

candidates {a:,-}—-a {Z;

= Icand g Itrain

TabR: Tabular Deep Learning Meets Nearest Neighbors (ICLR 2024)



TabR

similarities Information flow weights values
o8 -
>0 x I
0f x
top-
P >0 x }— = ﬂ
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TabR: Tabular Deep Learning Meets Nearest Neighbors (ICLR 2024)



Technical insights

The retrieval module R

e Linear complexity w.r.t. the number of candidates
e The inter-object communication happens only once

The similarity module S
e By default, the L2 distance is recommended (important!)
The value module V

e Can depend on objects and their interactions

TabR: Tabular Deep Learning Meets Nearest Neighbors (ICLR 2024)



TabR results

ODL wins 0OTies

OXGBoost wins

MLP (< 2021) |

[

28

FI-Transformer (Gorishniy et al., 2021) |

17

MLP-PLR (Gorishniy et al., 2022) [

15

17

TabR (Ours, 2023) |




Training on a subset of data

RMSE

2.1+

1.9

L7

1.5

1.3

Trained on % of training data

1 %
2%
w4 %
=8 %
=16 %
=100 %

1 % 2% 4% 8 % 16 % 2% 64 % 100 %

% of training data used as candidates on inference



Limitations

e Reminder: simple ML models suffer from distributions shifts in features and/or

labels of individual objects.
e Retrieval-based models also suffer from distribution shifts in interactions

between objects.
e To prevent such problems, one has to think how to configure the retrieval

behavior in each individual use case.

TabR: Tabular Deep Learning Meets Nearest Neighbors (ICLR 2024)
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Ensembles of Models in Machine Learning

Main idea: train several models and combine predictions from them

GBDT are essentially an ensemble
e Go-to recipe in DL: train several independent models and average the

predictions
o Can be used for any model
o Often improves accuracy
o Higher memory and runtime costs



BatchEnsemble (Wen et al., 2020): main idea

dxd
shape: 1 x d 1xd = Shared
[ Linear ]: T @ W + b = Mostly shared
= Not shared

shape: k = d kxd kxd kxd

T 1 x4 81 b1

Linearpg |: ® @| W |o +
T T Sk by
X R S B

R, S, B - adapters
Since k << d, runtime and memory overhead are tolerable!



TabM: BatchEnsemble meets Tabular DL

MLP
kxm r1OR- Linear  ReLU HDrop fd b dy
T / TabMys - — Linear; —#; —[ L(-,y) ]-(—tram
shape: 1 x m N
d —[ Repeat ]— L ~<—frain
* s TabM [ ~ MLPge — Linear; —iji T’-—[ L(-,y) ]-(—train
eeraaas Linearpg —| ReLU HDro final hared Ny -------s
A - BE *—[ H P N raprua:li;a!lun-s ma:udﬂgc i Mean F-»test

e TabM with k = 1is equivalent to MLP
e Specific initialization of adapters is needed
e Can be combined with non-linear feature embeddings



TabM: results
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Performance ranks with std. dev.

On all datasets
Sorted by the mean rank
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Efficiency
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Optimization properties of TabM

- Churn House ; Otto
—— train k=1 —— train k=32"" IRSPOREE
-------- test k=1 - test k=32 i
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= 10
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Conclusion

e TabM with non-linear feature embeddings are currently the state-of-the-art
e TabM typically outperforms GBDT on existing benchmarks
e TabM exhibits stable optimization and less overfitting
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Tabular DL In our lives

DeepETA: How Uber Predicts
Arrival Times Using Deep Learning

Rides Freight Eats

|
-: o¥ <

How we built it: Stripe Radar

Our most recent architecture evolution occurred in mid-2022 when we migrated from an
ensemble “Wide & Deep model," composed of an XGBoost model and a deep neural
network (DNN), to a pure DNN-only model. The result was a model that trains faster,
scales better, and is more adaptable to the most cutting-edge ML techniques.

B HHIY ycopepueHcTBOBaNM HeApoceTs ANA AHArHOCTHKK
CKOPOCTH CTapeHWA

Yueuuie YuupapeuTata JoSaussckors yooBapLUISHCTEORANM HERDOCaTE ANR
AHAFHOCTHEM CROPOCTH CTapeHua. HoBaA MORENL HMMYHONOMYSCHMY 4YAcos
nomdMng Hassadve SimAge (Small Immuno Age). OHa NOCTPOSHA HA OCHOBE
ryBoKoR HerpoHHoR ceTi FT-Transformer, HedpoceTs OUEHHESET COCTORHWE
opramasa no 10 BuoMaprepaM, KOTOPREe OTPaKAIOT ...

Challenging Gradient Boosted Decision Trees with Tabular
Transformers for Fraud Detection at Booking.com



Conclusion

e Tabular DL is extremely impactful research field with many unresolved
guestions

e New models are being developed and the progress has not converged
e GBDTs are still in wide use but their primacy has been challenged

e Tomorrow: Advanced topics in Tabular DL

Questions?



Advanced Topics In
Tabular Deep Learning

Lecturer: Artem Babenko

9 Research

ASCOMP 2024
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Recap from yesterday

e Tabular problems are everywhere

e “Shallow” GBDT models are still a popular choice

e Tabular DL architectures are actively developed

e Are new DL architectures the only research direction?
o Nol
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Where do tabular DL researchers get datasets?

openml.org

archive.ics.uci.edu

kaggle.com/datasets

from sklearn.datasets import *

Do we care to examine those 10-20-100 datasets? - Rarely!

[

Welcome to the UC Irvine Machine Learning Repository

We Currently mariain G483 Qrasets 28 8 $0rViCe 10 The Machine larning CoOmmunity. Here, you Can donale and find datasets used Dy millors of pecple Ml wound the
wor
m ConTmmuTE A DATASET
Popular Datasets New Datasets
Iris PhIUSIL Phishing URL (Website)
A wmall classic dataset from Fisher, 1930 One of the earfest known datasets used fo L"J PRUGE, Phishing USL Dataset i 2 substantiyl dataset comprising 134 350 legtimate.

3, Claswfication @ 150 rstances 8 4Festures A Classification W 235.8K stances © 54 Features
Heart Discase RT-0T2022
& daabases: Cloveland, Hungary, Switzerfand, and the VA Long Beach The R 12022

;'1 0 RTeT2022, & propriatary dataset derived from & realtime loT nfra:
=

G 303 ratences B 13 featuem A Casufication, Regres @ 1230K nslances B 84 featuren


http://kaggle.com/datasets

Let's Look at the Academic Benchmarks

Wond of Not used

Task (¢ nooded)
T ymeh 148 19 o vononossomioacaaenh heerdatabalata s actmbia= 19 ! o °
¥ qeardioden 155 42 hips L cpenmt Ao -datalalg, Side 1494 0 o L]
4 sudology 226 70 hiipataechive ion o eduiataset Spudoiony » standaedized 1 0 0
' heath E] 14 btps Lopenmi orp'search Mynesdatalstatus *actvedid 41 © 0 0
b cole s 27 dilos. o openmi orp/search Phpe=catalatatus *ackvedid = 25 1 o °
7 monksproblems-2 o 7 b opent hoesdaled *actredid=334 ' o °
' Balanco-scale 65 $ biip Larchove s k) edaiiataset 1 20akanoe « scale 1 o L]
b prod Licd 10 bopa e cosomi opieach I hpesdatad Siae470 ' o 0
M Austraian 15 Dins Sacchive s w0 oo, 14N alanccrecit aoptcval ° ! °
" credtapgeove (2] 16 Bapa.faechive 13 vd oo dalaNeV 27 /Credt aope o 0 1 0
2 vehicle e 19 hiioawww. openmi o esch e vdatabaatus *acivedid 54 o o 0
U owed 080 857 hpe Cwww.openmi ocp'seetch Thpo~dataSatatie vackvedid= 1464 ] 0 ]
W soomob 1"se 6 DODS Owvw 0penad oo searth PDe ~SataANats > actvedid=44397 0 1 0
% 300-plants-texture 1 o 0




What did we find?

Problems:

Data Leakage (10 datasets). data-leaks stemming
from data preparation errors, or inappropriate data splits being
used in papers using the datasets.

No time data available (most datasets). either
represent a fixed snapshot of some real-world phenomena, or
don't have a way to construct a time-based validation/test sets

Dataset Duplication (califomia Housing, House 16H,
house_sales, kdd_ipums_la_97-small, houses) - all datasets are
from 1990 census data

Dataset Size. 19/100 less than 10k samples.

Synthetic data. (or froman unknown source). datasets for
which the original data source is untraceable.

Not Tabular. datasets where underlying data is not tabular
like images, audio, text or graphs

>50%

Datasets don't handle time
properly

~20

Features available

38%

“Problematic” Datasets

<1kk

Small sample sizes
Majority is bellow 100k samples



TabRed: focus on temporal-shift based evaluation

Dataset Sizes (Qsp) Issues (#lssues / #Datasets) Time-split
Benchmark ' :

#Samples #Features Data-Leakage ?J{l[:rtz:;fb?; Non-Tabular Needed Possible Used
Grinsztajn et al. [22] 16,679 13 71744 1/44 7744 22 5
Tabzilla [40] 3,087 23 3/36 6/36 12 /36 12 0
WildTab [35] 546,543 10 1°/3 1/3 0/3 1 1 X
TableShift [18] 840,582 23 0/15 0/15 0/15 15 8
Gorishniy et al. [21] 57,909 20 1" /10 1/10 0/10 7 1
TabReD (ours) 7,163,150 261 X X X v v




Classification (ROC AUC 1) Regression (RMSE ) A
Methods : ~ N
Homesite Ecom HomeCredit Sberbank Cooking Delivery Maps Weath Rank
Insurance Offers Default Housing Time ETA  Routing eather
Classical ML Baselines
XGBoost 09601 0.5763 0.8670 0.2419 04823  0.5468 0.1616 14671 2.6+ 1.2
LightGBM 09603 0.5758 (.8664 0.2468 04826 0.5468 0.1618 1.4625 29+ 1.2
CatBoost 0.9606 053596 0.8621 0.2482 04823  0.5465 0.1619 1.4688 3.1+14
RandomForest 0.9570 0.5764 0.8269 0.2640 04884 0.5959 0.1653 1.5838 7.1 420
Linear 0.9290 0.5665 (0.8168 0.2509 04882 0.5579 0.1709 1.7679 8.1 +2.5
Tabular DL Models
MLP 09500 0.6015 (0.8545 0.2508 04820 05504 0.1622 1.5470 48 + 1.7
SNN 0.9492 05996 08551 02858 04838 0.5544 0.1651 15649 6.4+ 1.9
DCNv2 0.9392 0.5955 0.8466 0.2770 04842 0.5532 0.1672 15782 74423
ResNet 0.9469 (0.5995 (0.5493 0.2743 04825 05527 0.1625 1.5021 55+2.1
FT-Transformer 0.9622 0.5775 0.8571 0.2440 0.4820 0.5542 0.1625 15104 44+ 14
MLP-PLR 09621 0.5957 0.856% 0.243% 04812 0.5527 0.1616 15177 3.6+ 1.5
Tr{}mpl 09546 0.5792 0.8381 0.2596 04834 05563 0.1652 15722 6.8+20
Retrieval Augmented Tabular DL
TabR-S 0.9487 0.5943 (0.8501 0.2820 04828 05514 0.1639 14666 58 + 2.2
ModernNCA 0.9514 0.5765 0.8531 0.2593 04825 05498 0.1625 15062 504+1.3




Findings on TabReD

Percentage Change Over MLP

Benchmark from Gorishniy et al. (2024) TabReD
i G
L 1475 # ¥ %
1685 LB = =
1345 1.3 L34 1 1.28% - = 2 x
0, 6RT -z [ 6T 5% =
007 | 0.0% LS | | = = = e
e 2 - ; [ = 4
= . = g : 4 g S £ = & 5 g g -
= =z Y - . ; = & = = B B : 1055
E a. = ﬂ-’: - E': E % I’.‘ll.. = 5 1485 LR
bt = = E b e b = = E e
= el -T—'- 'g = o, o dy |4
_ - - —
= = =
Models | Ensembles [ Training Methods Retrieval-Based Models

Performance differences are less pronounced (feature engineering)
Non-linear feature embeddings and ensembles are helpful
FT-Transformer is not justified

Retrieval-augmented models are generally less performant



Temporal shift

GBDTs are less robust to temporal shift

Realistic evaluation setups are
important for healthy progress

RMSE |

0.470 1

0.465 -

0.460 -

0.455 -

MLP

MLP (FLE)
XGBoost
TabR

Cooking Time

Time Split Random Split



Summary

e A new benchmark with datasets, closer resembling real-world scenarios
Sources: Kaggle and Yandex Eats, Maps, Weather, Lavka

Datasets with 10M samples and feature-engineering (with up-to 1000s of
features)

e All datasets have timestamps
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Pretraining in DL: main idea

e To train the model to solve a related problem before the main learning process
o Same data but dufferent tasks (e.g. with cheaper labels)
o "Extra” data from the same or a similar domain

e Inner logic of the pretrained model can be helpful for the target problem
e Provides better than random initialization for subsequent gradient optimization
e De facto standard for typical pipelines in NLP and CV

o Contrastive learning
o Self-prediction



Pretraining in Tabular DL: specifics

e No "extra” data
o Need to pretrain on the main train set

e Lack of "valid” data augmentations
o Any augmentation can TODO the data distribution
o Pretraining can be harmful

e Problems from a large number of domains
o Need of the universal pretraining recipe



Unsupervised pretraining for tabular data

Mask prediction

I T 0
T Ty 1
I3 Cﬂl‘l'ugt I3 0
L4 Ty 0
Ty Ts 1
T T m
Stage 1 oz SOMUPE _ Head >
; <«—>» M
(pretraining) (pretrain) Loss
Stage 2 .
r —>» —>
(fine-tuning) NN Head —> Yy €<—>y

Loss Training



Experiments with pretraining

Percentage Change Over MLP

Benchmark from Gorishniy et al. (2024) TabReD
i G
L 1475 # ¥ %
1685 LB = =
1345 1.3 L34 1 1.28% - = 2 x
0, 6RT -z [ 6T 5% =
007 | 0.0% LS | | = = = e
e 2 - ; [ = 4
= . = g : 4 g S £ = & 5 g g -
= =z Y - . ; = & = = B B : 1055
E a. = ﬂ-’: - E': E % I’.‘ll.. = 5 1485 LR
bt = = E b e b = = E e
= el -T—'- 'g = o, o dy |4
_ - - —
= = =
Models | Ensembles [ Training Methods Retrieval-Based Models

e All pretraining strategies perform on par to each other
e Pretraining is beneficial for both simple and advanced tabular DL models
e In temporal-shift based evaluation, pretraining can be harmful



When and why pretraining helps?

4x10-1{ —#— MLP
\ » —4— MLP (mask)
x 10 —+— MLP (mask + target)
m 2% 107! +
(a4 + +
107! +
6x 1072

Importance rank

e An experiment on synthetic data with controllable feature importances
e For different models, we measure the reconstruction quality of different features from
the inner model representations

e Pretrained models capture less important (but still significant!) features better



Conclusion

e Pretraining does have some potential in Tabular DL
e The choice of pretraining objective does not matter much

e The pretraining effect depends on the distribution shift between train and test

® [Effectis often negative when the shift is noticeable

® The universal pretraining recipe is yet to discover
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Main idea of cross-domain Tabular DL

e Leverage knowledge from one domain to improve predictions in another one
e Sounds like magic for tabular DL but ...

e Sometimes does make sense (and even works)



XTAB (Zhu et al., ICML’2023)

[0 Categorical column

0 Numerical column Token count * Pretrains a shared FT-Transformer
— - backbone on many tabular tasks

Tab. #1 CILLTT] — Featurizer#1 |— E} Embedding

- J dimension ) )

* Feature tokenizers and final
Tab. #2 CITTT0  —( Featurizer#2 | — 8 "heads” are not shared
CLS token

1 / . -

Tab. #3 [T TT]— Featurizer#3 | — 2 * Can be used as a starting point for
Embeddings a new tabular task

____________ —|Head #1
If Reconstruction !
If_ “Contrastive —: J [Head #2
I loss !

(" Supervised !
. _loss____} [_|Head #3

Projection heads Shared backbone

Image credit: Zhu et al., ICML 2023



XTAB: results

| —8-Classification tasks 1 T L F e T T
. o H . . - | 3
—H-—Regression tasks }--. o E | e
L . '.'_: ‘_-_?' . .[.'.' ' .
80 [—8-Al tasks - - S 05 ML SRS e
X - - ‘Baseline - = Jleo g e | el
~ g Y L I .._lf . | RA IR
270 L S n I PP
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Image credit: Zhu et al., ICML 2023



LN

XTAB: dependence on the train size
0 -
—E—1 pretraining task
20| —HE—18 pretraining tasks

—&—52 pretraining tasks
- - ‘Baseline

Win rate (%)
» ~
o o

0 500 1000 1500 2000

Number of pretraining steps

Model rank

—
T

o

w

N

Image credit: Zhu et al., ICML 2023



XTAB: conclusion

e Does provide some profit but ...

e |[slimited to Transformer-based architectures
o Can be slow

o Can be suboptimal

e Typical improvements are moderate



TabPFN (Hollmann et al., ICLR2023)

Done once,

offline Done per real-world dataset, online

[S

ample synthetic datasets D;
from prior: D; ~ p(D)

R
[ and test point Tiest

v

eal-world training dataset D;..q

)

B

Train TabPEN gy on synthetic Obtain ga (Ytest|Ttests Dreal
datasets {D, ..., Dy} with a single forward pass

)

(a) Prior-fitting and inference

Q('|I47 D) Q('|"T5a D)

! } O }

(z1,91)(x2,92)(T3,y3) T4 T

(b) Architecture and attention mechanism

Image credit: Hollmann et al., ICLR 2023



TabPFN: synthetics

® Synthetic datasets are sampled from an accurately designed prior

(a) Synthetic datasets (b) Actual datasets

Image credit: Hollmann et al., ICLR 2023



TabPFN: results

0.94 14 T é 18 7 |
8 0.93 g=t=em—e Z 12 - N Mg
<0024 ofise SEE= 2 10 - ot S 74 "
——eejeicEms S < 6 SRS
S 0.91 - S 4 > 8 \ Q5 /""'--.I
& < 6 — S ./
g 0.9+ Q \ — 4 - e 1
8 O 4 | \. !——‘ R~ 3 ~ /.;s i#s-—:’-?
= 0.89 - g 5 =2 | § 30T " =t
) 9—:—0-.-!.__.-::_ g 2 ° oo
0.88 | | 0 -p——e=empte==moiNeuus 1 = | |
Is 5s 30s Smin 1h Is 5s 30s S5min 1h Is 5s 30s Smin 1h
Given Time Budget Given Time Budget Given Time Budget

TabPEN = Auto-sklearn 2.0 == Autogluon == LightGBM
XGBoost = LogReg Cocktail == Catboost
KNN o SAINT

Image credit: Hollmann et al., ICLR 2023



TabPFN: conclusion

Very interesting and novel idea but ...

Is limited to Transformer-based architectures

Is limited to small-scale problems

(@)

A lot of current research aims to scale TabPFN

Focuses on a low-runtime-budget niche

(©)

In many applications, performance cannot be traded off against runtime



CARTE (Kim et al., ICML'2024)

=1 Title

ISSN

Publisher

Country

Region

H index

1 JMLR

15337928

United
States

Northern
America

239

= - *[Feature Initialization: Language ModelJ

-

/

JMLR
...
Num. Values
239 — 15337928
~Hl-() HE--EE
| Title
! -+l
i Hindex ISSN
'._.. | B |
Region Country
[ il

Northern United
America States
~En Hl

Each datapoint is represented
by a “star”-shaped graph

"Textual” features are
initialized based on LLM

Special initialization of
numerical features and the
central node

Image credit: Kim et al., ICML 2024



CARTE: pretraining from the external knowledge graph

67413000 1.8 percent
fas has economic
population arOwih
Extrach Fiihce islocated in  Paris
subgraph

e is lodated in
Mona Lisa is located in
is known for

has.

website
has name

louvre.fr
Louvre

Extracted Subgraph

N Smithsonian ]
A% Institution Truncation for pos. samples
2 67413000 1.8 percent

\ has has economic
3 population growth

o E
British o rance
Museum ‘_—._‘_\. is located in

— \

| \\ has
| websits
\ =% has name

\ ;i
< louvre.fr finriea

Knowledge Graph \ Positive Sample

CARTE Neural Network | Neg. Pos.
(Contrastive Loss) samples samples

] X XOE XOE
Linear Linear
\[ (Nodes) I (Edges) J @ l
i 1
o x0 E0
| Graph Structure | S ey
‘
Add & Norm
67413000 1.8 percent m
population growth
France\ Slocated in Paris
is located in ;
Mona Lisa is located in
is known_for X(”ﬂ, E@+1)
x layers
I
Aggregation & Readout (Center Node) ]
has
O/ website has name
o Contrastive Loss
louvre.fr Louvre
Input graph CARTE Model Architecture

Image credit: Kim et al., ICML 2024



CARTE: results

1 -
- q
a. Reg ression - 40 datasets .7.
TabVec - skrub’s TableVectorizer / ¢
XGB - XGBoost ® . /
(0.8  RF-RandomForest / o 1

CN - Concat Numerical @ & \ X
EN - Embed Numerical / t/Q/

4

Normalized score

Models (ordered by value at n=2048)

=@- CARTE ResNet-Bagging
== TabVec-XGB =¥~ TabVec-Ridge
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=#§- CatBoost ResNet
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-*

Image credit: Kim et al., ICML 2024



CARTE: conclusion

e The method does work but ...
e The success is shown only for Transformer-based architectures

e The success is shown only for small-scale problems (up to a few thousand
objects)

e The method needs meaningful column names

e For certain domains there could be a lack of external knowledge graphs
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Generative Modeling in ML
e Goal: to approximate the data distribution by a probabilistic model
e One of potential applications: to produce useful synthetic data

e Several families of methods exist: GAN, VAE, NF, DDPM



Our work: TabDDPM

e Diffusion models were shown to outperform GAN/VAE/NF for images
e GAN/VAE were used for tabular data but without much success

e Let's use diffusion models for tabular data!



What are diffusion models?

e Forward process gradually adds noise to an initial sample with the predefined
distributions ¢ (z¢|zi-1)

e Reverse process gradually denoises a latent variable with distributions
p(z¢-1lze) that are approximated by a neural network

e For example, Gaussian distribution for continuous data and categorical
distributions for categorical data

Use variational lower bound

po(Xe—1]%¢)
@ H o % @
e K L i H
F ﬁ e o= i m i >
-’ ﬂx v ﬁ”:lexl l} . oA 'l

Image source: https:/lilianweng.github.io



TabDDPM

e Gaussian diffusion for numerical features
e Multinomial diffusion (Hoogeboom et al., 2021) for categorical features
e TabDDPM models joint distribution since MLP takes both numerical and
categorical features to approximate reverse process
Consider regression target as an additional feature
Final loss is sum of gaussian DDPM and categorical DDPM losses

T FLRETEE
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Evaluation

e Machine Learning utility (Xu et al., 2019)
e Privacy metrics

train | ' sample

Real Train Data ——» Generative Model —» Generated Train

Data

ltrain
test

Real Test Data CatBoost* model

*(Prokhorenkova et al., 2018) Compare this score
with the real one



ML utility with CatBoost model

Average rank (over 16 datasets) with std in terms of ML utility of synthetic data

1 — the best

5 — the worst

Model Avg. rank Std of rank
CTGAN 4.25 1.06
TVAE 3.81 0.83
CTABGAN+ | 3.63 1.02
SMOTE 1.75 0.84
TabDDPM 1.56 0.60

SMOTE (Chawla et al., 2002) —
linear interpolation of two
random samples from train



ML utility with CatBoost model

Average rank (over 16 datasets) with std in terms of ML utility of synthetic data

1 — the best

5 — the worst

Model Avg. rank Std of rank
CTGAN 4.25 1.06
TVAE 3.81 0.83
CTABGAN+ | 3.63 1.02
SMOTE 1.75 0.84
TabDDPM 1.56 0.60

Main Conclusions:

e TabDDPM outperforms GAN/VAE-based baselines

e SMOTE is a simple and strong baseline

SMOTE (Chawla et al., 2002) —
linear interpolation of two
random samples from train



ML utility with Catboost. Numbers.

e TabDDPM performs on par with SMOTE

e Real score is almost always the highest one

Table 5. The values of machine learning efficiency computed w.r.t. the state-of-the-art tuned CatBoost model.

AB (rz) AD (rF1y BU (F1) CA ir2) CAR (rF1) CH r1) DE ir1) DI iF1y
CTGAN 0.420= 004 0.789+ 001 0.86T+.003  0.686+.003 0.730+.001 0.723:006 0699002 0.459:.008
TVAE 0.433+.008 0.781+.002 0864005 0.752:.00m 0.717+.001 0.732+.006 0.656+.007  0.T14:.039
CTABGAN - 0.783+.002  0.855:.005 - 0.717:001 0.688:2006  0.644:011  0.731:.022
CTABGAN+  0.467:.004 07724008 0.884:005  0.525:.004 0.733+.001 0.702:.012 0.686+.000 0.734:.020
SMOTE 0.549: 005 0.791+.002 0.891:002 084020010 0.732: 00 0.743+ 005 0.693:.008 0.683:.037
TabDDPM 0.550:010 0.795:001 0906:008 08362002 0737001 0.755:008 0.691:004 0.740:020
Real 0.556+.004 0.815+.002 0.906 002  0.857+.001 0.738+.001 0.7404+ 008 0.688+.008 0.785:.013

FB (rz) GE (r1) HI (r1y HO (g2 IN (r2) Kl (rz) MI (F1y WI (F1)
CTGAN 0.443+ o005 0.333+003 0.575:006  0.433+ 005 0.745:.000  0.772:.005 0.783+.005  0.749:.015
TVAE 0.685+.003 0.434+ 006  0.638:003  0.493+.006 0.784+.010 0.824: 003 0.912+.0m 0.501:.m2
CTABGAN - 0.392: 006  0.575:.004 = - - 0.880: 000  0.906:.019
CTABGAN+ 0.509:011 0.406+ .009 0.664 + .00z 0.504 1+ 005 0.797 + .005 0.444+ 014 (0.892 4+ ooz 0.798: 021
SMOTE 0.803: 002 0.658:007 0.722:000 06621004 0.812:002 0.842:00a 0.932:00m 0.913:.007
TabDDPM 0.713+.002 05972006 0.T22:000 0.67T:010 0809002 0.833:014 09362001 0.904: 008
Real 0.837+.00 0.636+.007 0.724:.0m 0.662+ 003 0.814+ .00 0.907 +.002 0.934+000  0.898: 006




Privacy. Distance to closest record (DCR)

e F[or each synthetic sample, we find the minimum distance to real
datapoints and take the mean of these distances

e Low DCR values = all synthetic samples are essentially copies of some
real datapoints

e Larger DCR values = generative model can produce something “new”
rather than just copies of real data



Histograms of DCR values for TabDDPM and SMOTE
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DCR comparison

Average rank (over 16 datasets) with std in terms of DCR

1 — the best

4 — the worst

Model Avg. rank Std of rank
TVAE 2.31 0.95
CTABGAN+ | 1.56 0.81
SMOTE 3.44 1.09
TabDDPM 2.69 0.79

Main Conclusions:
e TabDDPM outperforms SMOTE

e GAN/VAE methods show high DCR but generate useless (in terms of

ML utility) samples




Conclusion

e Diffusion models generate tabular data of higher quality than GAN/VAE data

o But still not enough for usage as "useful” synthetics
e “Old-school” SMOTE is a strong baseline that should not be overlooked

e TabDDPM is a step forward towards strong yet private method



Outline

e Quick recap

e Tabular Benchmarks

e Pretraining in Tabular DL
e Cross-domain learning

e Generative tabular models

e [uture directions



Future of Tabular DL research

e More theory and understanding
o Optimization dynamics
o Dealing with ‘high-frequencies’
e Synergy with Graph ML and GNNs
o For graphs with tabular features in the nodes/edges
o For multi-table problems with relations between tables
e Exploit LLM for Tabular problems
o Use textual metadata about features
o  Multi-modal datasets
e Usability

o Tooling



Questions?
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