
Tabular Deep Learning

Lecturer: Artem Babenko

ASCOMP 2024

Lecturer

● Artem Babenko, Research Lead @ Yandex Research

● Publications on deep/machine learning for tabular data by Yandex Research
○ (NeurIPS 2018) CatBoost: unbiased boosting with categorical features

○ (ICLR 2020) Neural Oblivious Decision Ensembles for Deep Learning on Tabular Data

○ (NeurIPS 2021) Revisiting Deep Learning Models for Tabular Data

○ (NeurIPS 2022) On Embeddings for Numerical Features in Tabular Deep Learning

○ (arXiv 2022) Revisiting Pretraining Objectives for Tabular Deep Learning

○ (ICML 2023) TabDDPM: Modelling Tabular Data with Diffusion Models

○ (ICLR 2024) TabR: Tabular Deep Learning Meets Nearest Neighbors

○ (2024) Several projects under submission

● Tabular DL projects by Yandex Research: github.com/yandex-research/rtdl
(RTDL = Research on Tabular Deep Learning)

http://github.com/yandex-research/rtdl

YR Tabular DL team

Outline

● Introduction

● The pre-deep learning era of Tabular ML

● Modern Tabular Deep Learning

● Real-world impact

Outline

● Introduction

● The pre-deep learning era of Tabular ML

● Modern Tabular Deep Learning

● Real-world impact

Tabular data

A B

... ...

... ...

... ...

X

C

...

...

...

y

Tabular data — two-dimensional tables

● rows ~ objects

● columns ~ features

Today we focus on

● supervised regression

● supervised classification

Applications

● everyday tasks…

● …and many others

Notation

Metrics

Metrics are used to evaluate how well predictions approximate labels.

Example: Root Mean Squared Error (RMSE)

Dataset splitting

Data preprocessing

Continuous features

● QuantileTransformer

● QuantileTransformer with noise (example)

● StandardScaler

● Missing data: x → (0, 1) if x is NaN else (x, 0)

Categorical features

● One-hot encoding

(typically used when the number of distinct

values is not too high)

● Embeddings

● Missing data: make NaN a new category

Binary features

● Just encode as {0, 1}

● Missing data: any reasonable

strategy (see “Continuous”

and “Categorical”)

Ordinal features

● OrdinalEncoder

● Thermometer encoding

● Cumulative embeddings

P.S. Standardize regression labels

https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.QuantileTransformer.html
https://github.com/yandex-research/rtdl-num-embeddings/blob/main/package/example.ipynb
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.OrdinalEncoder.html

Specifics of Tabular ML problems

● Limited dataset sizes

● Heterogeneous and mixed-type features

● Each problem has its own nature

● Target dependencies are often “ill-behaved”

Outline

● Introduction

● The pre-deep learning era of Tabular ML

● Modern Tabular Deep Learning

● Real-world impact

Classic machine learning algorithms

● K-Nearest neighbors

● Linear model (Linear regression, Logistic regression, …)

● Support vector machine (SVM)

● Decision tree

● Random forest

● Gradient-boosted decision tree (GBDT)

Gradient Boosting Decision Trees (GBDT)

GBDT is a strong baseline for Tabular ML

● Efficient

● Easy-to-use

● Effective

Best DL model vs XGBoost on the academic benchmark of ~40 datasets

Outline

● Introduction

● The pre-deep learning era of Tabular ML

● Modern Tabular Deep Learning

● Real-world impact

Chaos in Tabular DL before 2021

Differentiable trees

● NODE (Popov et al., 2020)

“Attention”-based models

● AutoInt (Song et al., 2019)

● TabNet (Arik and Pfister, 2020)

Multiplicative feature interactions

● DCN2 (Wang et al., 2020)

Specific activation functions

● SNN (Klambauer et al., 2017)

Boosting-like models

● GrowNet (Badirli et al., 2020)

And many others

● …

2021: Are we really making progress in Tabular DL? [1,2,3]

[1] Revisiting Deep Learning Models for Tabular Data, Gorishniy et al., 2021

[2] Tabular Data: Deep Learning is not all you need, Schwartz-Ziv et al., 2021

[3] Regularization is all you need: simple neural nets can excel on tabular data, Kadra et al., 2021

● Tuning protocols and evaluation are often unfair

● GBDT is still superior to DL

● Sophisticated DL models are often inferior to simple ones

Outline

● Introduction

● The pre-deep learning era of Tabular ML

● Modern Tabular Deep Learning

- MLP, Resnet, FT-Transformer

● Real-world impact

● Simple and fast

● Average performance

MLP

One MLP block

ResNet for Tabular Data

● Inspired by ResNet (He at al., 2015)

● Quite simple and relatively fast

● Hopefully, more powerful than MLP

One ResNet block

FT-Transformer (Ours)

● Based on Transformer (Vaswani et al., 2017)

● Slower than ResNet

● Hopefully, more powerful than MLP and ResNet

FT-Transformer

FT-Transformer (Ours)

Feature Tokenizer One Transformer block

Experiments

● Tuning

○ mostly Optuna (Akiba et al., 2019)

(50-100 iterations)

○ grid search from original papers

● Evaluation

○ 15 random seeds

○ ensembles: three ensembles

(each consists of five single models)

● No DL tricks

○ no augmentation

○ no lr scheduling

○ no pretraining

○ etc.

Experiments: datasets and protocol

N ~ dataset size B ~ binary

K ~ number of features M ~ multiclass

Dataset N K Metric

California Housing 21K 8 RMSE

Adult 49K 14 Accuracy (B)

Helena 66K 27 Accuracy (M)

Jannis 84K 54 Accuracy (M)

Higgs (small) 99K 28 Accuracy (B)

ALOI 108K 128 Accuracy (M)

Epsilon 500K 2000 Accuracy (B)

Year 516K 90 RMSE

Covtype 582K 54 Accuracy (M)

Yahoo 710K 699 RMSE

Microsoft 1201K 136 RMSE

Experiments: Neural Networks

Takeaways

● MLP is still a good sanity check

● ResNet is a strong baseline

● FT-Transformer outperforms existing solutions

on most of the tasks

● Tuning matters

Model Average rank (std)

TabNet 7.5 (2.0)

SNN 6.4 (1.4)

AutoInt 5.7 (2.3)

GrowNet 5.7 (2.2)

MLP 4.8 (1.9)

DCN V2 4.7 (2.0)

NODE 3.9 (2.8)

ResNet 3.3 (1.8)

FT-Transformer 1.8 (1.2)

Experiments: FT-Transformer vs GBDT

(ensembles)

(d) ~ default configuration *out of competition Accuracy RMSE Best

Takeaways

● ensemble of default FT-Transformers is a powerful thing

Dataset CA AD HE JA HI AL EP YE CO YA MI

#objects 20K 49K 65K 84K 98K 108K 500K 515K 581K 710K 1200K

XGBoost (d) 0.462 0.874 0.348 0.711 0.717 0.924 0.88 9.192 0.964 0.761 0.751

CatBoost (d) 0.428 0.873 0.386 0.724 0.728 0.948 0.889 8.885 0.91 0.749 0.744

FT-Transformer (d) 0.454 0.86 0.395 0.734 0.731 0.966 0.897 8.727 0.973 0.747 0.742

FT-Transformer* 0.448 0.86 0.398 0.739 0.731 0.967 0.898 8.751 0.973 0.747 0.743

Experiments: ResNet & FT-Transformer vs GBDT

(ensembles)

Accuracy RMSE

Best

Takeaways

● “DL vs GBDT” is an open problem

● FT-Transformer reduces the gap

between ResNet and GBDT

Dataset CA AD HE JA HI AL EP YE CO YA MI

#objects 20K 49K 65K 84K 98K 108K 500K 515K 581K 710K 1200K

XGBoost 0.431 0.872 0.377 0.724 0.728 - 0.886 8.819 0.969 0.732 0.742

CatBoost 0.423 0.874 0.388 0.727 0.729 - 0.89 8.837 0.968 0.74 0.741

ResNet 0.478 0.857 0.398 0.734 0.731 0.966 0.898 8.77 0.967 0.751 0.745

FT-Transformer 0.448 0.86 0.398 0.739 0.731 0.967 0.898 8.751 0.973 0.747 0.743

An intriguing property of FT-Transformer

~ easy for GBDT

~ easy for ResNet

Takeaways

● FT-Transformer is a more

universal architecture for

Tabular Data

● Further research is needed to

understand this phenomenon

Conclusion

● MLP and ResNet

○ fast and strong baselines

● FT-Transformer

○ slower

○ can yield even better performance

● FT-Transformer is a more universal architecture for

Tabular Data

● Python package with the new models:

pip install rtdl

● Source code:

https://github.com/yandex-research/rtdl

https://github.com/yandex-research/rtdl

Outline

● Introduction

● The pre-deep learning era of Tabular ML

● Modern Tabular Deep Learning

- Embeddings for Numerical Features

● Real-world impact

How can we improve FT-Transformer?

(2022) On Embeddings for Numerical Features in Tabular Deep Learning

How can we improve FT-Transformer?

Looks too simple

(2022) On Embeddings for Numerical Features in Tabular Deep Learning

But wait…

What if we combine this with MLP?

(2022) On Embeddings for Numerical Features in Tabular Deep Learning

● Transformers perform well

○ The only model with embeddings for numerical features

Moreover…

(2022) On Embeddings for Numerical Features in Tabular Deep Learning

● Transformers perform well

○ The only model with embeddings for numerical features

● GBDTs process numerical features via thresholds

Moreover…

(2022) On Embeddings for Numerical Features in Tabular Deep Learning

● Transformers perform well

○ The only model with embeddings for numerical features

● GBDTs process numerical features via thresholds

● MLP is a universal approximator in theory…

Moreover…

(2022) On Embeddings for Numerical Features in Tabular Deep Learning

● Transformers perform well

○ The only model with embeddings for numerical features

● GBDTs process numerical features via thresholds

● MLP is a universal approximator in theory…

● … but not in practice. Though, changing the input space can help

○ “Fourier Features Let Networks Learn High Frequency Functions

in Low Dimensional Domains” (Matthew Tancik et al., 2020)

○ “NeRF: Representing Scenes as Neural Radiance Fields for View

Synthesis” (Ben Mildenhall et al., 2020)

Moreover…

(2022) On Embeddings for Numerical Features in Tabular Deep Learning

Input representation matters

Fourier Features Let Networks Learn

High Frequency Functions in Low

Dimensional Domains (Tancik et al.,

NeurIPS 2020)

The original image

● Transformers perform well

○ The only model with embeddings for numerical features

● GBDTs process numerical features via thresholds

● MLP is a universal approximator in theory…

● … but not in practice. Though, changing the input space can help

○ “Fourier Features Let Networks Learn High Frequency Functions

in Low Dimensional Domains” (Matthew Tancik et al., 2020)

○ “NeRF: Representing Scenes as Neural Radiance Fields for View

Synthesis” (Ben Mildenhall et al., 2020)

● Little work on numerical features processing

Moreover…

(2022) On Embeddings for Numerical Features in Tabular Deep Learning

Questions

● Can we improve the way numerical features are processed?

● Can MLP-like models benefit from embeddings for numerical features?

(2022) On Embeddings for Numerical Features in Tabular Deep Learning

MLP with embeddings

Without embeddings With embeddings

(2022) On Embeddings for Numerical Features in Tabular Deep Learning

Piecewise-linear encoding

(2022) On Embeddings for Numerical Features in Tabular Deep Learning

Piecewise-linear encoding

For Transformer-based models:

● - the embedding of the t-th bin

(2022) On Embeddings for Numerical Features in Tabular Deep Learning

Piecewise-linear encoding

Quantile binning

(2022) On Embeddings for Numerical Features in Tabular Deep Learning

Piecewise-linear encoding

Quantile binning Target-aware binning

(2022) On Embeddings for Numerical Features in Tabular Deep Learning

Periodic activation functions

● (this approach is unrelated to PLE)

● Inspired by the success of periodic functions in other fields

(2022) On Embeddings for Numerical Features in Tabular Deep Learning

Other approaches

● Stacking “conventional” layers (linear, ReLU, SoftMax, …)

● Stacking “conventional” layers on top of PLE or Periodic

(2022) On Embeddings for Numerical Features in Tabular Deep Learning

Model names

Embedding name Embedding function f_i Comment

L Linear(x)

LR ReLU(Linear(x))

Q-LR ReLU(Linear(PLE(x))) quantile-based PLE

T-LR ReLU(Linear(PLE(x))) target-based PLE

PLR ReLU(Linear(Periodic(x))) The “LR” addition is more

important, than for PLE

Model name = <Backbone-Embedding>

Examples:

● Transformer-L (== FT-Transformer)

● MLP-PLR (2022) On Embeddings for Numerical Features in Tabular Deep Learning

● Tuning

○ mostly Optuna (Akiba et al., 2019)

(50-100 iterations)

● Evaluation

○ 15 random seeds

○ ensembles: three ensembles

(each consists of five single models)

● No DL tricks

○ no augmentation

○ no lr scheduling

○ no pretraining

○ etc.

Experiments: datasets and protocol

N ~ dataset size B ~ binary

K ~ number of features M ~ multiclass

Dataset N K Metric

Gesture 10K 32 Accuracy (M)

Churn modelling 10K 11 Accuracy (B)

Eye movements 11K 26 Accuracy (M)

California Housing 21K 8 RMSE

House pricing 23K 16 RMSE

Adult income 49K 14 Accuracy (B)

Otto products 62K 93 Accuracy (M)

Higgs (small) 98K 28 Accuracy (B)

FB comments 197K 51 RMSE

Santander 200K 200 Accuracy (M)

Covertype 581K 54 Accuracy (M)

Microsoft 1201K 136 RMSE

(2022) On Embeddings for Numerical Features in Tabular Deep Learning

● The benchmark is biased towards GBDT-friendly

problems

● MLP-LR is consistently better than MLP

Experiments: results

Model Average rank (std.)

CatBoost 6.8 (4.9)

XGBoost 9.0 (5.7)

MLP 15.6 (2.4)

MLP-LR 10.2 (4.4)

MLP-Q-LR 10.7 (4.6)

MLP-T-LR 10.3 (3.8)

MLP-PLR 4.9 (4.8)

Transformer-L 10.6 (3.3)

Transformer-LR 9.4 (4.1)

Transformer-Q-LR 8.5 (5.5)

Transformer-T-LR 7.2 (4.6)

Transformer-PLR 6.0 (4.5)

(2022) On Embeddings for Numerical Features in Tabular Deep Learning

Experiments: results

● The benchmark is biased towards GBDT-friendly

problems

● MLP-LR is consistently better than MLP

Embeddings for numerical features:

● can provide significant boost

● are applicable to MLP-like models

○ See MLP vs MLP-PLR!

● allow MLP-like models to compete with

Transformer

Model Average rank (std.)

CatBoost 6.8 (4.9)

XGBoost 9.0 (5.7)

MLP 15.6 (2.4)

MLP-LR 10.2 (4.4)

MLP-Q-LR 10.7 (4.6)

MLP-T-LR 10.3 (3.8)

MLP-PLR 4.9 (4.8)

Transformer-L 10.6 (3.3)

Transformer-LR 9.4 (4.1)

Transformer-Q-LR 8.5 (5.5)

Transformer-T-LR 7.2 (4.6)

Transformer-PLR 6.0 (4.5)

(2022) On Embeddings for Numerical Features in Tabular Deep Learning

● Backbones

○ MLP is a great backbone for researchers and practitioners

○ ResNet may (or may not) provide an extra bit of performance

○ Transformers are competitive, but slow (unclear if it is worth it)

● Embeddings for numerical features

○ can provide significant performance boost

○ Linear + ReLU
■ low risk & low reward

○ Periodic + Linear + ReLU
■ tune sigma: [0.01, 0.02, 0.05, 0.1, 0.5, 1.0, …]

■ for other hyperparameters, take inspiration from the official repository

○ PLE-based solutions can also provide good performance

Conclusion

Outline

● Introduction

● The pre-deep learning era of Tabular ML

● Modern Tabular Deep Learning

- TabR

● Real-world impact

Retrieval-Augmented Learning

● Is originally motivated by the local learning paradigm (Vapnik et al. 1992)

● Demonstrates success in NLP and computer vision tasks

● Provides higher interpretability and robustness

TabR

TabR: Tabular Deep Learning Meets Nearest Neighbors (ICLR 2024)

TabR

TabR: Tabular Deep Learning Meets Nearest Neighbors (ICLR 2024)

Technical insights

TabR: Tabular Deep Learning Meets Nearest Neighbors (ICLR 2024)

The retrieval module R

● Linear complexity w.r.t. the number of candidates

● The inter-object communication happens only once

The similarity module S

● By default, the L2 distance is recommended (important!)

The value module V

● Can depend on objects and their interactions

TabR results

Training on a subset of data

Limitations

TabR: Tabular Deep Learning Meets Nearest Neighbors (ICLR 2024)

● Reminder: simple ML models suffer from distributions shifts in features and/or

labels of individual objects.

● Retrieval-based models also suffer from distribution shifts in interactions

between objects.

● To prevent such problems, one has to think how to configure the retrieval

behavior in each individual use case.

Outline

● Introduction

● The pre-deep learning era of Tabular ML

● Modern Tabular Deep Learning

- TabM

● Real-world impact

Ensembles of Models in Machine Learning

● Main idea: train several models and combine predictions from them

● GBDT are essentially an ensemble

● Go-to recipe in DL: train several independent models and average the

predictions
○ Can be used for any model

○ Often improves accuracy

○ Higher memory and runtime costs

BatchEnsemble (Wen et al., 2020): main idea

R, S, B - adapters

Since k << d, runtime and memory overhead are tolerable!

TabM: BatchEnsemble meets Tabular DL

● TabM with k = 1 is equivalent to MLP

● Specific initialization of adapters is needed

● Can be combined with non-linear feature embeddings

TabM: results

Efficiency

Optimization properties of TabM

● TabM with non-linear feature embeddings are currently the state-of-the-art

● TabM typically outperforms GBDT on existing benchmarks

● TabM exhibits stable optimization and less overfitting

Conclusion

Outline

● Introduction

● The pre-deep learning era of Tabular ML

● Modern Tabular Deep Learning

● Real-world impact

Tabular DL in our lives

● Tabular DL is extremely impactful research field with many unresolved

questions

● New models are being developed and the progress has not converged

● GBDTs are still in wide use but their primacy has been challenged

● Tomorrow: Advanced topics in Tabular DL

Conclusion

Questions?

Advanced Topics in

Tabular Deep Learning

Lecturer: Artem Babenko

ASCOMP 2024

Outline

● Quick recap

● Tabular Benchmarks

● Pretraining in Tabular DL

● Cross-domain learning

● Generative tabular models

● Future directions

Outline

● Quick recap

● Tabular Benchmarks

● Pretraining in Tabular DL

● Cross-domain learning

● Generative tabular models

● Future directions

Recap from yesterday

● Tabular problems are everywhere

● “Shallow” GBDT models are still a popular choice

● Tabular DL architectures are actively developed

● Are new DL architectures the only research direction?
○ No!

Outline

● Quick recap

● Tabular Benchmarks

● Pretraining in Tabular DL

● Cross-domain learning

● Generative tabular models

● Future directions

Where do tabular DL researchers get datasets?

● openml.org

● archive.ics.uci.edu

● kaggle.com/datasets

● from sklearn.datasets import *
● Do we care to examine those 10-20-100 datasets? - Rarely!

http://kaggle.com/datasets

Let’s Look at the Academic Benchmarks

Data Leakage (10 datasets). data-leaks stemming

from data preparation errors, or inappropriate data splits being

used in papers using the datasets.

No time data available (most datasets). either

represent a fixed snapshot of some real-world phenomena, or

don't have a way to construct a time-based validation/test sets

Dataset Duplication (California Housing, House 16H,

house_sales, kdd_ipums_la_97-small, houses) - all datasets are

from 1990 census data

Dataset Size. 19/100 less than 10k samples.

Synthetic data. (or from an unknown source). datasets for

which the original data source is untraceable.

Not Tabular. datasets where underlying data is not tabular

like images, audio, text or graphs

What did we find?

Problems:

TabRed: focus on temporal-shift based evaluation

Findings on TabReD

● Performance differences are less pronounced (feature engineering)

● Non-linear feature embeddings and ensembles are helpful

● FT-Transformer is not justified

● Retrieval-augmented models are generally less performant

Temporal shift

● GBDTs are less robust to temporal shift

● Realistic evaluation setups are

important for healthy progress

Summary

● A new benchmark with datasets, closer resembling real-world scenarios

● Sources: Kaggle and Yandex Eats, Maps, Weather, Lavka

● Datasets with 10M samples and feature-engineering (with up-to 1000s of

features)

● All datasets have timestamps

Outline

● Quick recap

● Tabular Benchmarks

● Pretraining in Tabular DL

● Cross-domain learning

● Generative tabular models

● Future directions

Pretraining in DL: main idea

● To train the model to solve a related problem before the main learning process
○ Same data but dufferent tasks (e.g. with cheaper labels)

○ ”Extra” data from the same or a similar domain

● Inner logic of the pretrained model can be helpful for the target problem

● Provides better than random initialization for subsequent gradient optimization

● De facto standard for typical pipelines in NLP and CV
○ Contrastive learning

○ Self-prediction

Pretraining in Tabular DL: specifics

● No ”extra” data
○ Need to pretrain on the main train set

● Lack of ”valid” data augmentations
○ Any augmentation can TODO the data distribution

○ Pretraining can be harmful

● Problems from a large number of domains
○ Need of the universal pretraining recipe

Unsupervised pretraining for tabular data

Mask prediction

Stage 1

(pretraining)

Stage 2

(fine-tuning)
Training

Experiments with pretraining

● All pretraining strategies perform on par to each other

● Pretraining is beneficial for both simple and advanced tabular DL models

● In temporal-shift based evaluation, pretraining can be harmful

When and why pretraining helps?

● An experiment on synthetic data with controllable feature importances

● For different models, we measure the reconstruction quality of different features from

the inner model representations

● Pretrained models capture less important (but still significant!) features better

Conclusion

● Pretraining does have some potential in Tabular DL

● The choice of pretraining objective does not matter much

● The pretraining effect depends on the distribution shift between train and test

● Effect is often negative when the shift is noticeable

● The universal pretraining recipe is yet to discover

Outline

● Quick recap

● Tabular Benchmarks

● Pretraining in Tabular DL

● Cross-domain learning

● Generative tabular models

● Future directions

Main idea of cross-domain Tabular DL

● Leverage knowledge from one domain to improve predictions in another one

● Sounds like magic for tabular DL but …

● Sometimes does make sense (and even works)

XTAB (Zhu et al., ICML’2023)

Image credit: Zhu et al., ICML 2023

• Pretrains a shared FT-Transformer

backbone on many tabular tasks

• Feature tokenizers and final

”heads” are not shared

• Can be used as a starting point for
a new tabular task

XTAB: results

Image credit: Zhu et al., ICML 2023

XTAB: dependence on the train size

Image credit: Zhu et al., ICML 2023

XTAB: conclusion

● Does provide some profit but …

● Is limited to Transformer-based architectures

○ Can be slow

○ Can be suboptimal

● Typical improvements are moderate

TabPFN (Hollmann et al., ICLR’2023)

Image credit: Hollmann et al., ICLR 2023

TabPFN: synthetics

Image credit: Hollmann et al., ICLR 2023

● Synthetic datasets are sampled from an accurately designed prior

TabPFN: results

Image credit: Hollmann et al., ICLR 2023

TabPFN: conclusion

● Very interesting and novel idea but …

● Is limited to Transformer-based architectures

● Is limited to small-scale problems

○ A lot of current research aims to scale TabPFN

● Focuses on a low-runtime-budget niche

○ In many applications, performance cannot be traded off against runtime

CARTE (Kim et al., ICML’2024)

Image credit: Kim et al., ICML 2024

• Each datapoint is represented

by a “star”-shaped graph

• ”Textual” features are

initialized based on LLM

• Special initialization of
numerical features and the
central node

CARTE: pretraining from the external knowledge graph

Image credit: Kim et al., ICML 2024

CARTE: results

Image credit: Kim et al., ICML 2024

CARTE: conclusion

● The method does work but …

● The success is shown only for Transformer-based architectures

● The success is shown only for small-scale problems (up to a few thousand

objects)

● The method needs meaningful column names

● For certain domains there could be a lack of external knowledge graphs

Outline

● Quick recap

● Tabular Benchmarks

● Pretraining in Tabular DL

● Cross-domain learning

● Generative tabular models

● Future directions

Generative Modeling in ML

● Goal: to approximate the data distribution by a probabilistic model

● One of potential applications: to produce useful synthetic data

● Several families of methods exist: GAN, VAE, NF, DDPM

Our work: TabDDPM

● Diffusion models were shown to outperform GAN/VAE/NF for images

● GAN/VAE were used for tabular data but without much success

● Let’s use diffusion models for tabular data!

What are diffusion models?

● Forward process gradually adds noise to an initial sample with the predefined

distributions

● Reverse process gradually denoises a latent variable with distributions

that are approximated by a neural network

● For example, Gaussian distribution for continuous data and categorical

distributions for categorical data

Image source: https://lilianweng.github.io

TabDDPM

● Gaussian diffusion for numerical features

● Multinomial diffusion (Hoogeboom et al., 2021) for categorical features

● TabDDPM models joint distribution since MLP takes both numerical and

categorical features to approximate reverse process

● Consider regression target as an additional feature

● Final loss is sum of gaussian DDPM and categorical DDPM losses

Individual feature distributions

Correlation matrices

Evaluation

● Machine Learning utility (Xu et al., 2019)

● Privacy metrics

*(Prokhorenkova et al., 2018) Compare this score

with the real one

ML utility with CatBoost model

Average rank (over 16 datasets) with std in terms of ML utility of synthetic data

1 – the best

5 – the worst

Model Avg. rank Std of rank

CTGAN 4.25 1.06

TVAE 3.81 0.83

CTABGAN+ 3.63 1.02

SMOTE 1.75 0.84

TabDDPM 1.56 0.60

SMOTE (Chawla et al., 2002) –

linear interpolation of two
random samples from train

ML utility with CatBoost model

Average rank (over 16 datasets) with std in terms of ML utility of synthetic data

1 – the best

5 – the worst

Model Avg. rank Std of rank

CTGAN 4.25 1.06

TVAE 3.81 0.83

CTABGAN+ 3.63 1.02

SMOTE 1.75 0.84

TabDDPM 1.56 0.60

SMOTE (Chawla et al., 2002) –

linear interpolation of two
random samples from train

Main Conclusions:

● TabDDPM outperforms GAN/VAE-based baselines

● SMOTE is a simple and strong baseline

ML utility with Catboost. Numbers.

● TabDDPM performs on par with SMOTE

● Real score is almost always the highest one

Privacy. Distance to closest record (DCR)

● For each synthetic sample, we find the minimum distance to real
datapoints and take the mean of these distances

● Low DCR values = all synthetic samples are essentially copies of some
real datapoints

● Larger DCR values = generative model can produce something “new”
rather than just copies of real data

Histograms of DCR values for TabDDPM and SMOTE

DCR comparison

Average rank (over 16 datasets) with std in terms of DCR

1 – the best

4 – the worst

Model Avg. rank Std of rank

TVAE 2.31 0.95

CTABGAN+ 1.56 0.81

SMOTE 3.44 1.09

TabDDPM 2.69 0.79

Main Conclusions:

● TabDDPM outperforms SMOTE

● GAN/VAE methods show high DCR but generate useless (in terms of

ML utility) samples

Conclusion

● Diffusion models generate tabular data of higher quality than GAN/VAE data

○ But still not enough for usage as ”useful” synthetics

● “Old-school” SMOTE is a strong baseline that should not be overlooked

● TabDDPM is a step forward towards strong yet private method

Outline

● Quick recap

● Tabular Benchmarks

● Pretraining in Tabular DL

● Cross-domain learning

● Generative tabular models

● Future directions

Future of Tabular DL research

● More theory and understanding
○ Optimization dynamics

○ Dealing with ‘high-frequencies’

● Synergy with Graph ML and GNNs
○ For graphs with tabular features in the nodes/edges

○ For multi-table problems with relations between tables

● Exploit LLM for Tabular problems
○ Use textual metadata about features

○ Multi-modal datasets

● Usability
○ Tooling

Questions?

	Slide 1: Tabular Deep Learning
	Slide 2: Lecturer
	Slide 3: YR Tabular DL team
	Slide 4: Outline
	Slide 5: Outline
	Slide 6: Tabular data
	Slide 7: Notation
	Slide 8: Metrics
	Slide 9: Dataset splitting
	Slide 10: Data preprocessing
	Slide 11: Specifics of Tabular ML problems
	Slide 12: Outline
	Slide 13: Classic machine learning algorithms
	Slide 14: Gradient Boosting Decision Trees (GBDT)
	Slide 15: GBDT is a strong baseline for Tabular ML
	Slide 16: Outline
	Slide 17: Chaos in Tabular DL before 2021
	Slide 18: 2021: Are we really making progress in Tabular DL? [1,2,3]
	Slide 19: Outline
	Slide 20: MLP
	Slide 21: ResNet for Tabular Data
	Slide 22: FT-Transformer (Ours)
	Slide 23: FT-Transformer (Ours)
	Slide 24: Experiments
	Slide 25: Experiments: datasets and protocol
	Slide 26: Experiments: Neural Networks
	Slide 27: Experiments: FT-Transformer vs GBDT (ensembles)
	Slide 28: Experiments: ResNet & FT-Transformer vs GBDT (ensembles)
	Slide 29: An intriguing property of FT-Transformer
	Slide 30: Conclusion
	Slide 31: Outline
	Slide 32: How can we improve FT-Transformer?
	Slide 33: How can we improve FT-Transformer?
	Slide 34: But wait…
	Slide 35: Moreover…
	Slide 36: Moreover…
	Slide 37: Moreover…
	Slide 38: Moreover…
	Slide 39: Input representation matters
	Slide 40: Moreover…
	Slide 41: Questions
	Slide 42: MLP with embeddings
	Slide 43: Piecewise-linear encoding
	Slide 44: Piecewise-linear encoding
	Slide 45: Piecewise-linear encoding
	Slide 46: Piecewise-linear encoding
	Slide 47: Periodic activation functions
	Slide 48: Other approaches
	Slide 49: Model names
	Slide 50: Experiments: datasets and protocol
	Slide 51: Experiments: results
	Slide 52: Experiments: results
	Slide 53: Conclusion
	Slide 54: Outline
	Slide 55: Retrieval-Augmented Learning
	Slide 56: TabR
	Slide 57: TabR
	Slide 58: Technical insights
	Slide 59: TabR results
	Slide 60: Training on a subset of data
	Slide 61: Limitations
	Slide 62: Outline
	Slide 63: Ensembles of Models in Machine Learning
	Slide 64: BatchEnsemble (Wen et al., 2020): main idea
	Slide 65: TabM: BatchEnsemble meets Tabular DL
	Slide 66: TabM: results
	Slide 67
	Slide 68: Efficiency
	Slide 69: Optimization properties of TabM
	Slide 70: Conclusion
	Slide 71: Outline
	Slide 72: Tabular DL in our lives
	Slide 73: Conclusion

